114 research outputs found

    Energy transfer and energy level decay processes in Tm3+-doped tellurite glass

    Get PDF
    The primary excited state decay and energy transfer processes in singly Tm3ĂŸ-doped TeO2:ZnO:Bi2O3:GeO2 (TZBG) glass relating to the 3F4 ! 3H6 1.85 lm laser transition have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the 3H4 manifold at 794 nm, the 3H5 manifold at 1220 nm, and 3F4 manifold at 1760 nm has established that the 3H5 manifold is entirely quenched by multiphonon relaxation in tellurite glass. The luminescence from the 3H4 manifold with an emission peak at 1465 nm suffers strong suppression due to cross relaxation that populates the 3F4 level with a near quadratic dependence on the Tm3ĂŸ concentration. The 3F4 lifetime becomes longer as the Tm3ĂŸ concentration increases due to energy migration and decreases to 2.92 ms when [Tm3ĂŸ]ÂŒ4 mol. % as a result of quasi-resonant energy transfer to free OH radicals present in the glass at concentrations between 11018 cm3 and 21018 cm3. Judd-Ofelt theory in conjunction with absorption measurements were used to obtain the radiative lifetimes and branching ratios of the energy levels located below 25 000 cm1. The spectroscopic parameters, the cross relaxation and Tm3ĂŸ(3F4) ! OH energy transfer rates were used in a numerical model for laser transitions emitting at 2335 nm and 1865 n

    Energy level decay and excited state absorption processes in erbium-doped tellurite glass

    Get PDF
    The fundamental excited state decay processes relating to the 4I11/2 → 4I13/2 transition in singly Er3+-doped tellurite (TZNL) glass have been investigated in detail using time-resolved fluorescence spectroscopy. Selective laser excitation of the 4I11/2 energy level at 970 nm and selective laser excitation of the 4I13/2 energy level at 1485 nm has established that energy transfer upconversion by way of a dipole-dipole interaction between two excited erbium ions in the 4I13/2 level populates the 4I11/2 upper laser level of the 3 m transition. This upconversion has been analyzed for Er2O3 concentrations between 0.5 mol. and 2.2 mol. . The 4I13/2 and 4I11/2 energy levels emit luminescence with peaks located at 1532 nm and 2734 nm, respectively, with radiative decay efficiencies of 65 and 6.8 for the higher (2.2 mol. ) concentration sample. The low 2.7 m emission efficiency is due to the non-radiative decay bridging the 4I11/2 → 4I13/2 transition and energy transfer to the OH- groups in the glass. Excited state absorption was observed to occur from the 4I13/2 and 4I11/2 levels with peak absorptions occurring at 1550 nm and 971 nm, respectively. The decay time of the 4I11/2 excited state decreased with an increase in the Er3+ concentration, which related to energy transfer to OH- ions that had a measured concentration of 6.6 1018 cm-3. Results from numerical simulations showed that a population inversion is reached at a threshold pumping intensity of ∌80 kW cm-2 for a cw laser pump at 976 nm if [Er3+] ≄ 1.2 × 1021 cm-3 (or [Er 2O3] ≄ 2.65 mol. ) without OH- impurities being present. © 2011 American Institute of Physics.LaĂ©rcio Gomes, Michael Oermann, Heike Ebendorff-Heidepriem, David Ottaway, Tanya Monro, AndrĂ© Felipe Henriques Librantz and Stuart D. Jackso

    UV continuum emission and diagnostics of hydrogen-containing non-equilibrium plasmas

    Get PDF
    For the first time the emission of the radiative dissociation continuum of the hydrogen molecule (a3ÎŁg+→b3ÎŁu+a^{3}\Sigma_{g}^{+} \to b^{3}\Sigma_{u}^{+} electronic transition) is proposed to be used as a source of information for the spectroscopic diagnostics of non-equilibrium plasmas. The detailed analysis of excitation-deactivation kinetics, rate constants of various collisional and radiative transitions and fitting procedures made it possible to develop two new methods of diagnostics of: (1) the ground X1ÎŁg+X^{1}\Sigma_{g}^{+} state vibrational temperature TvibT_{\text{vib}} from the relative intensity distribution, and (2) the rate of electron impact dissociation (d[\mbox{H_{2}}]/dt)_{\text{diss}} from the absolute intensity of the continuum. A known method of determination of TvibT_{\text{vib}} from relative intensities of Fulcher-α\alpha bands was seriously corrected and simplified due to the revision of d→ad \to a transition probabilities and cross sections of d←Xd \gets X electron impact excitation. General considerations are illustrated with examples of experiments in pure hydrogen capillary-arc and H2_{2}+Ar microwave discharges.Comment: REVTeX, 25 pages + 12 figures + 9 tables. Phys. Rev. E, eprint replaced because of resubmission to journal after referee's 2nd repor

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres
    • 

    corecore