6,452 research outputs found
Recommended from our members
Evolutionarily stable sexual allocation by both stressed and unstressed potentially simultaneous hermaphrodites within the same population.
Factors influencing allocation of resources to male and female offspring continue to be of great interest to evolutionary biologists. A simultaneous hermaphrodite is capable of functioning in both male and female mode at the same time, and such a life-history strategy is adopted by most flowering plants and by many sessile aquatic animals. In this paper, we focus on hermaphrodites that nourish post-zygotic stages, e.g. flowering plants and internally fertilising invertebrates, and consider how their sex allocation should respond to an environmental stress that reduces prospects of survival but does not affect all individuals equally, rather acting only on a subset of the population. Whereas dissemination of pollen and sperm can begin at sexual maturation, release of seeds and larvae is delayed by embryonic development. We find that the evolutionarily stable strategy for allocation between male and female functions will be critically dependent on the effect of stress on the trade-off between the costs of male and female reproduction, (i.e. of sperm and embryos). Thus, we identify evaluation of this factor as an important challenge to empiricists interested in the effects of stress on sex allocation. When only a small fraction of the population is stressed, we predict that stressed individuals will allocate their resources entirely to male function and unstressed individuals will increase their allocation to female function. Conversely, when the fraction of stress-affected individuals is high, stressed individuals should respond to this stressor by increasing investment in sperm and unstressed individuals should invest solely in embryos. A further prediction of the model is that we would not expect to find populations in the natural world where both stressed and unstressed individuals are both hermaphrodite
Application of Pade Approximants to Determination of alpha_s(M_Z^2) from Hadronic Event Shape Observables in e+e- Annihilation
We have applied Pade approximants to perturbative QCD calculations of event
shape observables in e+e- --> hadrons. We used the exact O(alpha_s^2)
prediction and the [0/1] Pade approximant to estimate the O(alpha_s^3) term for
15 observables, and in each case determined alpha_s(M_Z^2) from comparison with
hadronic Z^0 decay data from the SLD experiment. We found the scatter among the
alpha_s(M_Z^2) values to be significantly reduced compared with the standard
O(alpha_s^2) determination, implying that the Pade method provides at least a
partial approximation of higher-order perturbative contributions to event shape
observables.Comment: 15 pages, 1 EPS figure, Submitted to Physics Letters
Macroalgae contribute to the diet of Patella vulgata from contrasting conditions of latitude and wave exposure in the UK
Analysis of gut contents and stable isotope composition of intertidal limpets (Patella vulgata) showed a major contribution of macroalgae to their diet, along with microalgae and invertebrates. Specimens were collected in areas with limited access to attached macroalgae, suggesting a major dietary component of drift algae. Gut contents of 480 animals from 2 moderately wave exposed and 2 sheltered rocky shores in each of 2 regions: western Scotland (55–56°N) and southwest England (50°N), were analysed in 2 years (n = 30 per site per year). The abundance of microalgae, macroalgae and invertebrates within the guts was quantified using categorical abundance scales. Gut content composition was compared among regions and wave exposure conditions, showing that the diet of P. vulgata changes with both wave exposure and latitude. Microalgae were most abundant in limpet gut contents in animals from southwest sites, whilst leathery/corticated macroalgae were more prevalent and abundant in limpets from sheltered and northern sites. P. vulgata appears to have a more flexible diet than previously appreciated and these keystone grazers consume not only microalgae, but also large quantities of macroalgae and small invertebrates. To date, limpet grazing studies have focussed on their role in controlling recruitment of macroalgae by feeding on microscopic propagules and germlings. Consumption of adult algae suggests P. vulgata may also directly control the biomass of attached macroalgae on the shore, whilst consumption of drift algae indicates the species may play important roles in coupling subtidal and intertidal production
Some reflections on the building and calibration of useful network models
Over the past 10 years or so in the UK much effort has gone into the construction of computerised network models of water supply and distribution networks. At best such models offer an approximation of reality, their performance in simulation being constrained, in many cases, by the uncertainties present in the data upon which they were compiled. Most notable are the problems of demand specification, including leakage evaluation. In the UK this exercise is compounded by the unmetered nature of most domestic consumption. Reconciliation of the output of this process is invariably and inextricably linked to such matters as flow-meter accuracy, network and district metered area (DMA) connectivity, and monitored pressure regime, as well as precision in property allocation and quality of billing records. For large networks the task of the modeller is most arduous since the exercise of pipe calibration, leading to production of the 'verified' model, is itself highly dependent upon the distribution of flows generated in the network. The paper elaborates on these problems and introduces outlines for systematic treatments of the data reconciliation processes, with the aim of producing usable models which 'best' represent reality from the information available
Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres
We calculate detailed chemical abundance profiles for a variety of brown
dwarf and extrasolar giant planet atmosphere models, focusing in particular on
Gliese 229B, and derive the systematics of the changes in the dominant
reservoirs of the major elements with altitude and temperature. We assume an
Anders and Grevesse (1989) solar composition of 27 chemical elements and track
330 gas--phase species, including the monatomic forms of the elements, as well
as about 120 condensates. We address the issue of the formation and composition
of clouds in the cool atmospheres of substellar objects and explore the rain
out and depletion of refractories. We conclude that the opacity of clouds of
low--temperature (900 K), small--radius condensibles (specific chlorides
and sulfides), may be responsible for the steep spectrum of Gliese 229B
observed in the near infrared below 1 \mic. Furthermore, we assemble a
temperature sequence of chemical transitions in substellar atmospheres that may
be used to anchor and define a sequence of spectral types for substellar
objects with Ts from 2200 K to 100 K.Comment: 57 pages total, LaTeX, 14 figures, 5 tables, also available in
uuencoded, gzipped, and tarred form via anonymous ftp at
www.astrophysics.arizona.edu (cd to pub/burrows/chem), submitted to Ap.
Studies of high latitude current systems using MAGSAT vector data
The magnetic disturbance fields caused by global external current systems are considered with particular emphasis on improving the understanding of the physical processes which control high latitude current systems. Following processing the MAGSAT data were routinely plotted in the Universal Time (UT) format as well as in a polar plot format. The H'D'U' coordinate system, was adopted as the standard for representing the MAGSAT residual magnetic field vectors. A data file was generated and the TPOLAR computer code was developed to determine from the orbital elements, the time, latitude, and MLT of the extremum latitude of each transpolar segment of orbit. The precision of the vector data set from MAGSAT prompted an extended exploratory phase for data analysis procedures, modeling techniques and phenomenology
Studies of high latitude current systems using Magsat vector data
Disturbance fields caused by global external current systems are analyzed in order to gain an improved understanding of the phydical processes which control high latitude current systems and to increase the confidence level in the identification of internal field levels. The basic approach is to: (1) categorize the vector data by those physical parameters important for investigation of external current systems; (2) map the disturbances for appropriate conditions; (3) model the currents which might cause the mapped disturbances; and (4) correlate results with data from other sources. It is concluded that the Magsat data set appears to have remarkably high precision and quality and should permit major advances to be made in modeling current distribution at high latitudes in the ionosphere and magnetosphere
The magnetic field effect on the transport and efficiency of group III tris(8-hydroxyquinoline) organic light emitting diodes
Copyright 2008 American Institute of Physics. This article may be downloaded for personal use only. Any other use requires prior permission of the author and the American Institute of Physics. This article appeared in Journal of Applied Physics 103, 103715 (2008) and may be found at
Crucial Physical Dependencies of the Core-Collapse Supernova Mechanism
We explore with self-consistent 2D F{\sc{ornax}} simulations the dependence
of the outcome of collapse on many-body corrections to neutrino-nucleon cross
sections, the nucleon-nucleon bremsstrahlung rate, electron capture on heavy
nuclei, pre-collapse seed perturbations, and inelastic neutrino-electron and
neutrino-nucleon scattering. Importantly, proximity to criticality amplifies
the role of even small changes in the neutrino-matter couplings, and such
changes can together add to produce outsized effects. When close to the
critical condition the cumulative result of a few small effects (including
seeds) that individually have only modest consequence can convert an anemic
into a robust explosion, or even a dud into a blast. Such sensitivity is not
seen in one dimension and may explain the apparent heterogeneity in the
outcomes of detailed simulations performed internationally. A natural
conclusion is that the different groups collectively are closer to a realistic
understanding of the mechanism of core-collapse supernovae than might have
seemed apparent.Comment: 25 pages; 10 figure
On the Radii of Close-in Giant Planets
The recent discovery that the close-in extrasolar giant planet, HD209458b,
transits its star has provided a first-of-its-kind measurement of the planet's
radius and mass. In addition, there is a provocative detection of the light
reflected off of the giant planet, Boo b. Including the effects of
stellar irradiation, we estimate the general behavior of radius/age
trajectories for such planets and interpret the large measured radii of
HD209458b and Boo b in that context. We find that HD209458b must be a
hydrogen-rich gas giant. Furthermore, the large radius of close-in gas giant is
not due to the thermal expansion of its atmosphere, but to the high residual
entropy that remains throughout its bulk by dint of its early proximity to a
luminous primary. The large stellar flux does not inflate the planet, but
retards its otherwise inexorable contraction from a more extended configuration
at birth. This implies either that such a planet was formed near its current
orbital distance or that it migrated in from larger distances (0.5 A.U.),
no later than a few times years of birth.Comment: aasms4 LaTeX, 1 figure, accepted to Ap.J. Letter
- …