880 research outputs found
On the Cause of Recent Variations in Lower Stratospheric Ozone
We use height‐resolved and total column satellite observations and 3‐D chemical transport model simulations to study stratospheric ozone variations during 1998–2017 as ozone‐depleting substances decline. In 2017 extrapolar lower stratospheric ozone displayed a strong positive anomaly following much lower values in 2016. This points to large interannual variability rather than an ongoing downward trend, as reported recently by Ball et al. (2018, https://doi.org/10.5194/acp‐18‐1379‐2018). The observed ozone variations are well captured by the chemical transport model throughout the stratosphere and are largely driven by meteorology. Model sensitivity experiments show that the contribution of past trends in short‐lived chlorine species to the ozone changes is small. Similarly, the potential impact of modest trends in natural brominated short‐lived species is small. These results confirm the important role that atmospheric dynamics plays in controlling ozone in the extrapolar lower stratosphere on multiannual time scales and the continued importance of monitoring ozone profiles as the stratosphere changes
Global investigation of the Mg atom and ion layers using SCIAMACHY/Envisat observations between 70 and 150 km altitude and WACCM-Mg model results
Mg and Mg+ concentration fields in the upper mesosphere/lower thermosphere (UMLT) region are retrieved from SCIAMACHY/Envisat limb measurements of Mg and Mg+ dayglow emissions using a 2-D tomographic retrieval approach. The time series of monthly mean Mg and Mg+ number density and vertical column density in different latitudinal regions are presented. Data from the limb mesosphere–thermosphere mode of SCIAMACHY/Envisat are used, which cover the 50 to 150 km altitude region with a vertical sampling of ≈3.3 km and latitudes up to 82°. The high latitudes are not observed in the winter months, because there is no dayglow emission during polar night. The measurements were performed every 14 days from mid-2008 until April 2012. Mg profiles show a peak at around 90 km altitude with a density between 750 cm−3 and 1500 cm−3. Mg does not show strong seasonal variation at latitudes below 40°. For higher latitudes the density is lower and only in the Northern Hemisphere a seasonal cycle with a summer minimum is observed. The Mg+ peak occurs 5–15 km above the neutral Mg peak altitude. These ions have a significant seasonal cycle with a summer maximum in both hemispheres at mid and high latitudes. The strongest seasonal variations of Mg+ are observed at latitudes between 20 and 40° and the density at the peak altitude ranges from 500 cm−3 to 4000 cm−3. The peak altitude of the ions shows a latitudinal dependence with a maximum at mid latitudes that is up to 10 km higher than the peak altitude at the equator. The SCIAMACHY measurements are compared to other measurements and WACCM model results. The WACCM results show a significant seasonal variability for Mg with a summer minimum, which is more clearly pronounced than for SCIAMACHY, and globally a higher peak density than the SCIAMACHY results. Although the peak density of both is not in agreement, the vertical column density agrees well, because SCIAMACHY and WACCM profiles have different widths. The agreement between SCIAMACHY and WACCM results is much better for Mg+ with both showing the same seasonality and similar peak density. However, there are also minor differences, e.g. WACCM showing a nearly constant altitude of the Mg+ layer's peak density for all latitudes and seasons
Airborne measurement of peroxy radicals using chemical amplification coupled with cavity ring-down spectroscopy: the PeRCEAS instrument
Hydroperoxyl (HO2) and organic peroxy (RO2) radicals have an unpaired spin and are highly reactive free radicals. Measurements of the sum of HO2 and RO2 provide unique information about the chemical processing in an air mass. This paper describes the experimental features and capabilities of the Peroxy Radical Chemical Enhancement and Absorption Spectrometer (PeRCEAS). This is an instrument designed to make measurements on aircraft from the boundary layer to the lower stratosphere. PeRCEAS combines the amplified conversion of peroxy radicals to nitrogen dioxide (NO2) with the sensitive detection of NO2 using cavity ring-down spectroscopy (CRDS) at 408 nm. PeRCEAS is a dual-channel instrument, with two identical reactor–detector lines working out of phase with one another at a constant and defined pressure lower than ambient at the aircraft altitude. The suitability of PeRCEAS for airborne measurements in the free troposphere was evaluated by extensive characterisation and calibration under atmospherically representative conditions in the laboratory. The use of alternating modes of the two instrumental channels successfully captures short-term variations in the sum of peroxy radicals, defined as RO∗2 (RO∗2=HO2+∑RO2+OH+∑RO, with R being an organic chain) in ambient air. For a 60 s measurement, the RO∗2 detection limit is < 2 pptv for a minimum (2σ) NO2 detectable mixing ratio < 60 pptv, under laboratory conditions in the range of atmospheric pressures and temperatures expected in the free troposphere. PeRCEAS has been successfully deployed within the OMO (Oxidation Mechanism Observations) and EMeRGe (Effect of Megacities on the transport and transformation of pollutants on the Regional and Global scales) missions in different airborne campaigns aboard the High Altitude LOng range research aircraft (HALO) for the study of the composition of the free troposphere
Global budgets of atmospheric glyoxal and methylglyoxal, and implications for formation of secondary organic aerosols
Author name used in this publication: Fu, Tzung-May.2008-2009 > Academic research: refereed > Publication in refereed journalVersion of RecordPublishe
Safe and stable generation of induced pluripotent stem cells using doggybone DNA vectors
The application of induced pluripotent stem cells (iPSCs) in advanced therapies is increasing at pace, but concerns remain over their clinical safety profile. We report the first-ever application of doggybone DNA (dbDNA) vectors to generate human iPSCs. dbDNA vectors are closed-capped linear double-stranded DNA gene expression cassettes that contain no bacterial DNA and are amplified by a chemically defined, current good manufacturing practice (cGMP)-compliant methodology. We achieved comparable iPSC reprogramming efficiencies using transiently expressing dbDNA vectors with the same iPSC reprogramming coding sequences as the state-of-the-art OriP/EBNA1 episomal vectors but, crucially, in the absence of p53 shRNA repression. Moreover, persistent expression of EBNA1 from bacterially derived episomes resulted in stimulation of the interferon response, elevated DNA damage, and increased spontaneous differentiation. These cellular activities were diminished or absent in dbDNA-iPSCs, resulting in lines with a greater stability and safety potential for cell therapy
Sharing clinical information across care settings: the birth of an integrated assessment system
Background: Population ageing, the emergence of chronic illness, and the shift away from institutional care challenge conventional approaches to assessment systems which traditionally are problem and setting specific
Flammable biomes dominated by eucalypts originated at the Cretaceous-Palaeogene boundary
Fire is a major modifier of communities, but the evolutionary origins of its prevalent role in shaping current biomes are uncertain. Australia is among the most fire-prone continents, with most of the landmass occupied by the fire-dependent sclerophyll and savanna biomes. In contrast to biomes with similar climates in other continents, Australia has a tree flora dominated by a single genus, Eucalyptus, and related Myrtaceae. A unique mechanism in Myrtaceae for enduring and recovering from fire damage likely resulted in this dominance. Here, we find a conserved phylogenetic relationship between post-fire resprouting (epicormic) anatomy and biome evolution, dating from 60 to 62 Ma, in the earliest Palaeogene. Thus, fire-dependent communities likely existed 50 million years earlier than previously thought. We predict that epicormic resprouting could make eucalypt forests and woodlands an excellent long-term carbon bank for reducing atmospheric CO2 compared with biomes with similar fire regimes in other continents
Probing the close environment of young stellar objects with interferometry
The study of Young Stellar Objects (YSOs) is one of the most exciting topics
that can be undertaken by long baseline optical interferometry. The magnitudes
of these objects are at the edge of capabilities of current optical
interferometers, limiting the studies to a few dozen, but are well within the
capability of coming large aperture interferometers like the VLT
Interferometer, the Keck Interferometer, the Large Binocular Telescope or
'OHANA. The milli-arcsecond spatial resolution reached by interferometry probes
the very close environment of young stars, down to a tenth of an astronomical
unit. In this paper, I review the different aspects of star formation that can
be tackled by interferometry: circumstellar disks, multiplicity, jets. I
present recent observations performed with operational infrared
interferometers, IOTA, PTI and ISI, and I show why in the next future one will
extend these studies with large aperture interferometers.Comment: Review to be published in JENAM'2002 proceedings "The Very Large
Telescope Interferometer Challenges for the future
Evolution in the Cluster Early-type Galaxy Size-Surface Brightness Relation at z =~ 1
We investigate the evolution in the distribution of surface brightness, as a
function of size, for elliptical and S0 galaxies in the two clusters RDCS
J1252.9-2927, z=1.237 and RX J0152.7-1357, z=0.837. We use multi-color imaging
with the Advanced Camera for Surveys on the Hubble Space Telescope to determine
these sizes and surface brightnesses. Using three different estimates of the
surface brightnesses, we find that we reliably estimate the surface brightness
for the galaxies in our sample with a scatter of < 0.2 mag and with systematic
shifts of \lesssim 0.05 mag. We construct samples of galaxies with early-type
morphologies in both clusters. For each cluster, we use a magnitude limit in a
band which closely corresponds to the rest-frame B, to magnitude limit of M_B =
-18.8 at z=0, and select only those galaxies within the color-magnitude
sequence of the cluster or by using our spectroscopic redshifts. We measure
evolution in the rest-frame B surface brightness, and find -1.41 \+/- 0.14 mag
from the Coma cluster of galaxies for RDCS J1252.9-2927 and -0.90 \+/- 0.12 mag
of evolution for RX J0152.7-1357, or an average evolution of (-1.13 \+/- 0.15)
z mag. Our statistical errors are dominated by the observed scatter in the
size-surface brightness relation, sigma = 0.42 \+/- 0.05 mag for RX
J0152.7-1357 and sigma = 0.76 \+/- 0.10 mag for RDCS J1252.9-2927. We find no
statistically significant evolution in this scatter, though an increase in the
scatter could be expected. Overall, the pace of luminosity evolution we measure
agrees with that of the Fundamental Plane of early-type galaxies, implying that
the majority of massive early-type galaxies observed at z =~ 1 formed at high
redshifts.Comment: Accepted in ApJ, 16 pages in emulateapj format with 15 eps figures, 6
in colo
RTL551 Treatment of EAE Reduces CD226 and T-bet+ CD4 T Cells in Periphery and Prevents Infiltration of T-bet+ IL-17, IFN-γ Producing T Cells into CNS
Recombinant T cell receptor ligands (RTLs) that target encephalitogenic T-cells can reverse clinical and histological signs of EAE, and are currently in clinical trials for treatment of multiple sclerosis. To evaluate possible regulatory mechanisms, we tested effects of RTL therapy on expression of pathogenic and effector T-cell maturation markers, CD226, T-bet and CD44, by CD4+ Th1 cells early after treatment of MOG-35-55 peptide-induced EAE in C57BL/6 mice. We showed that 1–5 daily injections of RTL551 (two-domain I-Ab covalently linked to MOG-35-55 peptide), but not the control RTL550 (“empty” two-domain I-Ab without a bound peptide) or Vehicle, reduced clinical signs of EAE, prevented trafficking of cells outside the spleen, significantly reduced the frequency of CD226 and T-bet expressing CD4+ T-cells in blood and inhibited expansion of CD44 expressing CD4+ T-cells in blood and spleen. Concomitantly, RTL551 selectively reduced CNS inflammatory lesions, absolute numbers of CNS infiltrating T-bet expressing CD4+ T-cells and IL-17 and IFN-γ secretion by CNS derived MOG-35-55 reactive cells cultured ex vivo. These novel results demonstrate that a major effect of RTL therapy is to attenuate Th1 specific changes in CD4+ T-cells during EAE and prevent expansion of effector T-cells that mediate clinical signs and CNS inflammation in EAE
- …