6 research outputs found
A radiation hybrid map of the proximal short arm of the human X chromosome spanning incontinentia pigmenti 1 (IP1) translocation breakpoints
Radiation hybrid mapping was used in combination with physical mapping techniques to order and estimate distances between 14 loci in the proximal region of the short arm of the human X chromosome. A panel of radiation hybrids containing human X-chromosomal fragments was generated from a Chinese hamster-human cell hybrid containing an X chromosome as its only human DNA. Sixty-seven radiation hybrids were screened by Southern hybridization with sets of probes that mapped to the region Xp11.4-Xcen to generate a radiation hybrid map of the area. A physical map of 14 loci was constructed based on the segregation of the loci in the hybrid clones. Using pulsed-field gel electrophoresis (PFGE) analyses and a somatic cell hybrid mapping panel containing naturally occurring X; autosome translocations, the order of the 14 loci was verified and the loci nearest to the X-chromosomal translocation breakpoints associated with the disease incontinentia pigmenti 1 (IP1) were identified. The radiation hybrid panel will be useful as a mapping resource for determining the location, order, and distances between other genes and polymorphic loci in this region as well as for generating additional region-specific DNA markers.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29766/1/0000104.pd
Isolation of DNA markers from a region between incontinentia pigmenti 1 (IP1) X-chromosomal translocation breakpoints by a comparative PCR analysis of a radiation hybrid subclone mapping panel
A strategy based on the use of human-specific interspersed repetitive sequence (IRS)-PCR amplification was used to isolate regional DNA markers in the vicinity of the incontinentia pigmenti 1 (IP1) locus. A radiation hybrid (RH) resulting from a fusion of an irradiated X-only somatic cell hybrid (C12D) and a thymidine kinase deficient (TK-) hamster cell line (a23) was identified as containing multiple X chromosome fragments, including DNA markers spanning IP1 X-chromosomal translocation breakpoints within region Xp11.21. From this RH, a panel of subclones was constructed and analyzed by IRS-PCR amplification to (a) identify subclones containing a reduced number of X chromosome fragments spanning the IP1 breakpoints and (b) construct a mapping panel to assist in identifying regional DNA markers in the vicinity of the IP1 locus. By using this strategy, we have isolated three different IRS-PCR amplification products that map to a region between IP1 X chromosome translocation breakpoints. A total of nine DNA sequences have now been mapped to this region; using these DNA markers for PFGE analyses, we obtained a probe order DXS14-DXS422-MTHFDL1-DXS705. These DNA markers provide a starting point for identifying overlapping genomic sequences spanning the IP1 translocation breakpoints; the availability of IP1 translocation breakpoints should assist the molecular analysis of this locus.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/29765/1/0000103.pd