78 research outputs found

    Possible Subclinical Leaflet Thrombosis in Bioprosthetic Aortic Valves

    Get PDF
    To the Editor: Makkar et al. (Nov. 19 issue)(1) report possible subclinical leaflet thrombosis in up to 40% of patients involved in a clinical trial of transcatheter aortic-valve replacement (TAVR). In contrast, we found a relatively low incidence (7%) of possible subclinical valve leaflet thrombosis among patients in our series in which 255 patients underwent TAVR with the use of a CoreValve prosthesis. A retrospective review of our series (unpublished data) showed that in 104 patients, cardiac computed tomography (CT) at a median of 7 days after implantation (range, 3 to 87) (in 51 patients), transesophageal echocardiography at a median . . 

    In silico study of the ageing effect upon aortic valves

    Get PDF
    A fluid–structure interaction (FSI) numerical model of the aortic valve was used to simulate and compare young and physiological aged operating conditions. The effect of normal ageing was considered by introducing alterations typically associated with senility: namely mild stiffening of the tissues and progressive dilation of the aortic chamber. The aim of this study is to provide a haemodynamic baseline which allows to assess the typical physiological variations associated with advancing age. Results were analysed in terms of leaflets kinematics, flow dynamics, pressure and valve performance parameters. The study indicates that the normal changes occurring with ageing, such as stiffening and progressive aortic root dilation, can result in substantial alterations in the haemodynamics and mechanical efficiency of the aortic valve. In particular, mild tissue stiffening and aortic root dilation reduce the valve efficiency over the cardiac cycle. The concomitant presence of both phenomena can lead to some mitigation of the impairment. The observed changes, which can be associated with normal and healthy ageing, need to be taken into consideration when evaluating the real pathological contribution of aortic valve diseases occurring in aged patients

    Standard mechanical testing is inadequate for the mechanical characterisation of shape-memory alloys: Source of errors and a new corrective approach

    Get PDF
    Thanks to its unique behaviour characterised by a superelastic response, Nitinol has now become the material of preference in a number of critical applications, especially in the area of medical implants. However, the reversible phase transformation producing its exceptional comportment is also responsible for a number of phenomena that make its mechanical characterisation particularly complex, by hindering the assumptions at the very basis of common uniaxial tensile testing. This necessarily reduces the level of safety and design optimization of current applications, which rely on incorrect mechanical parameters. In this study, the spurious effects introduced by the unconventional material behaviour during uniaxial tensile testing are analysed by means of digital image correlation (DIC), identifying the onset of undesirable material inhomogeneities and bending moments that are dependent on the test setup and strongly limit the reliability of standard characterisation. Hence, a more accurate and systematic testing approach, exploiting the ability of DIC to analyse the local mechanical response at specific regions of the test specimen, is presented and discussed

    Investigation of the Thermomechanical Response of Cyclically Loaded NiTi Alloys by Means of Temperature Frequency Domain Analyses

    Get PDF
    Nickel–Titanium (NiTi) shape memory alloys subjected to cyclic loading exhibit reversible temperature changes whose modulation is correlated with the applied load. This reveals the presence of reversible thermomechanical heat sources activated by the applied stresses. One such source is the elastocaloric effect, accounting for the latent heat of Austenite–Martensite phase transformation. It is, however, observed that when the amplitude of cyclic loads is not sufficient to activate or further propagate this phase transformation, the material still exhibits a strong cyclic temperature modulation. The present work investigates the thermomechanical behaviour of NiTi under such low-amplitude cyclic loading. This is carried out by analysing the frequency domain content of temperature sampled over a time window. The amplitude and phase of the most significant harmonics are obtained and compared with the theoretical predictions from the first and second-order theories of the Thermoelastic Effect, this being the typical reversible thermomechanical coupling prevailing under elastic straining. A thin strip of NiTi, exhibiting a fully superelastic behaviour at room temperature, was investigated under low-stress amplitude tensile fatigue cycling. Full-field strain and temperature distributions were obtained by means of Digital Image Correlation and IR Thermography. The work shows that the full field maps of amplitude and phase of the first three significant temperature harmonics carry out many qualitative information about the stress and structural state of the material. It is, though, found that the second-order theory of the Thermoelastic Effect is not fully capable of justifying some of the features of the harmonic response, and further work on the specific nature of thermomechanical heat sources is required for a more quantitative interpretation

    Transcatheter aortic valves produce unphysiological flows which may contribute to thromboembolic events: An in-vitro study.

    Get PDF
    PURPOSE: Transcatheter aortic valve implantation (TAVI) has been associated with large incidence of ischemic events, whose sources are still unclear. In fact, sub-acute complications cannot be directly related to the severity of the calcification in the host tissues, nor with catheter manipulation during the implant. A potential cause could be local flow perturbations introduced by the implantation approach, resulting in thrombo-embolic consequences. In particular, contrary to the surgical approach, TAVI preserves the presence of the native leaflets, which are expanded in the paravalvular space inside the Valsalva sinuses. The purpose of this study is to verify if this configuration can determine hemodynamic variations which may promote blood cell aggregation and thrombus formation. METHODS: The study was performed in vitro, on idealized models of the patient anatomy before and after TAVI, reproducing a range of physiological operating conditions on a pulse duplicator. The fluid dynamics in the Valsalva sinuses was analyzed and characterized using phase resolved Particle Image Velocimetry. RESULTS: Comparison of the flow downstream the valve clearly indicated major alterations in the fluid mechanics after TAVI, characterized by unphysiological conditions associated with extended stagnation zones at the base of the sinuses. CONCLUSION: The prolonged stasis observed in the Valsalva sinuses for the configuration modelling the presence of transcatheter aortic valves provides a fluid dynamic environment favourable for red blood cell aggregation and thrombus formation, which may justify some of the recently reported thromboembolic and ischemic events. This suggests the adoption of anticoagulation therapies following TAVI, and some caution in the patients׳ selection

    Investigation of the thermomechanical response of cyclically loaded niti alloys by means of temperature frequency domain analyses

    Get PDF
    Nickel\u2013Titanium (NiTi) shape memory alloys subjected to cyclic loading exhibit reversible temperature changes whose modulation is correlated with the applied load. This reveals the pres-ence of reversible thermomechanical heat sources activated by the applied stresses. One such source is the elastocaloric effect, accounting for the latent heat of Austenite\u2013Martensite phase transfor-mation. It is, however, observed that when the amplitude of cyclic loads is not sufficient to activate or further propagate this phase transformation, the material still exhibits a strong cyclic temperature modulation. The present work investigates the thermomechanical behaviour of NiTi under such low-amplitude cyclic loading. This is carried out by analysing the frequency domain content of temperature sampled over a time window. The amplitude and phase of the most significant harmonics are obtained and compared with the theoretical predictions from the first and second-order theories of the Thermoelastic Effect, this being the typical reversible thermomechanical coupling prevailing under elastic straining. A thin strip of NiTi, exhibiting a fully superelastic behaviour at room temperature, was investigated under low-stress amplitude tensile fatigue cycling. Full-field strain and temperature distributions were obtained by means of Digital Image Correlation and IR Thermography. The work shows that the full field maps of amplitude and phase of the first three significant temperature harmonics carry out many qualitative information about the stress and structural state of the material. It is, though, found that the second-order theory of the Thermoelastic Effect is not fully capable of justifying some of the features of the harmonic response, and further work on the specific nature of thermomechanical heat sources is required for a more quantitative interpretation

    Effect of the Alterations in Contractility and Morphology Produced by Atrial Fibrillation on the Thrombosis Potential of the Left Atrial Appendage.

    Get PDF
    Atrial fibrillation (AF) is a common arrhythmia mainly affecting the elderly population, which can lead to serious complications such as stroke, ischaemic attack and vascular dementia. These problems are caused by thrombi which mostly originate in the left atrial appendage (LAA), a small muscular sac protruding from left atrium. The abnormal heart rhythm associated with AF results in alterations in the heart muscle contractions and in some reshaping of the cardiac chambers. This study aims to verify if and how these physiological changes can establish hemodynamic conditions in the LAA promoting thrombus formation, by means of computational fluid dynamic (CFD) analyses. In particular, sinus and fibrillation contractility was replicated by applying wall velocity/motion to models based on healthy and dilated idealized shapes of the left atrium with a common LAA morphology. The models were analyzed and compared in terms of shear strain rate (SSR) and vorticity, which are hemodynamic parameters directly associated with thrombogenicity. The study clearly indicates that the alterations in contractility and morphology associated with AF pathologies play a primary role in establishing hemodynamic conditions which promote higher incidence of ischaemic events, consistently with the clinical evidence. In particular, in the analyzed models, the impairment in contractility determined a decrease in SSR of about 50%, whilst the chamber pathological dilatation contributed to a 30% reduction, indicating increased risk of clot formation. The equivalent rigid wall model was characterized by SSR values about one order of magnitude smaller than in the contractile models, and substantially different vortical behavior, suggesting that analyses based on rigid chambers, although common in the literature, are inadequate to provide realistic results on the LAA hemodynamics

    In Vitro and Ex Vivo Hemodynamic Testing of an Innovative Occluder for Paravalvular Leak After Transcather Aortic Valve Implantation

    Get PDF
    This study aims at achieving a proof-of-concept for a novel device designed to occlude the orifices that may form between transcatheter valves and host tissues after TAVI. The device effect on the performance of a SAPIEN XT with a paravalvular gap was assessed into an in vitro and ex vivo pulse duplicator. The in vitro tests were performed complying with the standard international regulations, measuring the trasvalvular pressure and regurgitant volumes with and without the paravalvular gap, and with the occluder correctly positioned into the gap. In the second series of tests, the leakage reduction due to the presence of the occluder was assessed for the same setup, into a beating swine heart. The occluder implantation decreased the regurgitant fraction of about 50% for the in vitro assessment and 75% for the ex vivo test, under rest operating conditions. These results suggest that suitably designed occluders can lead to important benefit in the PVL treatment
    • …
    corecore