45 research outputs found

    3D Bio-printed Scaffold-free Nerve Constructs with Human Gingiva-derived Mesenchymal Stem Cells Promote Rat Facial Nerve Regeneration

    Get PDF
    Despite the promising neuro-regenerative capacities of stem cells, there is currently no licensed stem cell-based product in the repair and regeneration of peripheral nerve injuries. Here, we explored the potential use of human gingiva-derived mesenchymal stem cells (GMSCs) as the only cellular component in 3D bio-printed scaffold-free neural constructs that were transplantable to bridge facial nerve defects in rats. We showed that GMSCs have the propensity to aggregate into compact 3D-spheroids that could produce their own matrix. When cultured under either 2D- or 3D-collagen scaffolds, GMSC spheroids were found to be more capable of differentiating into both neuronal and Schwann-like cells than their adherent counterparts. Using a scaffold-free 3D bio-printer system, nerve constructs were printed from GMSC spheroids in the absence of exogenous scaffolds and allowed to mature in a bioreactor. In vivo transplantation of the GMSC-laden nerve constructs promoted regeneration and functional recovery when used to bridge segmental defects in rat facial nerves. Our findings suggest that GMSCs represent an easily accessible source of MSCs for 3D bio-printing of scaffold-free nervous tissue constructs with promising potential application for repair and regeneration of peripheral nerve defects. © 2018 The Author(s)

    Generation of contractile forces by three-dimensional bundled axonal tracts in micro-tissue engineered neural networks

    Get PDF
    Axonal extension and retraction are ongoing processes that occur throughout all developmental stages of an organism. The ability of axons to produce mechanical forces internally and respond to externally generated forces is crucial for nervous system development, maintenance, and plasticity. Such axonal mechanobiological phenomena have typically been evaluated in vitro at a single-cell level, but these mechanisms have not been studied when axons are present in a bundled three-dimensional (3D) form like in native tissue. In an attempt to emulate native cortico-cortical interactions under in vitro conditions, we present our approach to utilize previously described micro-tissue engineered neural networks (micro-TENNs). Here, micro-TENNs were comprised of discrete populations of rat cortical neurons that were spanned by 3D bundled axonal tracts and physically integrated with each other. We found that these bundled axonal tracts inherently exhibited an ability to generate contractile forces as the microtissue matured. We therefore utilized this micro-TENN testbed to characterize the intrinsic contractile forces generated by the integrated axonal tracts in the absence of any external force. We found that contractile forces generated by bundled axons were dependent on microtubule stability. Moreover, these intra-axonal contractile forces could simultaneously generate tensile forces to induce so-called axonal “stretch-growth” in different axonal tracts within the same microtissue. The culmination of axonal contraction generally occurred with the fusion of both the neuronal somatic regions along the axonal tracts, therefore perhaps showing the innate tendency of cortical neurons to minimize their wiring distance, a phenomenon also perceived during brain morphogenesis. In future applications, this testbed may be used to investigate mechanisms of neuroanatomical development and those underlying certain neurodevelopmental disorders

    Emerging regenerative medicine and tissue engineering strategies for Parkinson\u27s disease.

    Get PDF
    Parkinson\u27s disease (PD) is the second most common progressive neurodegenerative disease, affecting 1-2% of people over 65. The classic motor symptoms of PD result from selective degeneration of dopaminergic neurons in the substantia nigra pars compacta (SNpc), resulting in a loss of their long axonal projections to the striatum. Current treatment strategies such as dopamine replacement and deep brain stimulation (DBS) can only minimize the symptoms of nigrostriatal degeneration, not directly replace the lost pathway. Regenerative medicine-based solutions are being aggressively pursued with the goal of restoring dopamine levels in the striatum, with several emerging techniques attempting to reconstruct the entire nigrostriatal pathway-a key goal to recreate feedback pathways to ensure proper dopamine regulation. Although many pharmacological, genetic, and optogenetic treatments are being developed, this article focuses on the evolution of transplant therapies for the treatment of PD, including fetal grafts, cell-based implants, and more recent tissue-engineered constructs. Attention is given to cell/tissue sources, efficacy to date, and future challenges that must be overcome to enable robust translation into clinical use. Emerging regenerative medicine therapies are being developed using neurons derived from autologous stem cells, enabling the construction of patient-specific constructs tailored to their particular extent of degeneration. In the upcoming era of restorative neurosurgery, such constructs may directly replace SNpc neurons, restore axon-based dopaminergic inputs to the striatum, and ameliorate motor deficits. These solutions may provide a transformative and scalable solution to permanently replace lost neuroanatomy and improve the lives of millions of people afflicted by PD

    Development of optically controlled living electrodes with long-projecting axon tracts for a synaptic brain-machine interface.

    Get PDF
    For implantable neural interfaces, functional/clinical outcomes are challenged by limitations in specificity and stability of inorganic microelectrodes. A biological intermediary between microelectrical devices and the brain may improve specificity and longevity through (i) natural synaptic integration with deep neural circuitry, (ii) accessibility on the brain surface, and (iii) optogenetic manipulation for targeted, light-based readout/control. Accordingly, we have developed implantable living electrodes, living cortical neurons, and axonal tracts protected within soft hydrogel cylinders, for optobiological monitoring/modulation of brain activity. Here, we demonstrate fabrication, rapid axonal outgrowth, reproducible cytoarchitecture, and simultaneous optical stimulation and recording of these tissue engineered constructs in vitro. We also present their transplantation, survival, integration, and optical recording in rat cortex as an in vivo proof of concept for this neural interface paradigm. The creation and characterization of these functional, optically controllable living electrodes are critical steps in developing a new class of optobiological tools for neural interfacing

    Distinct mechanisms for aerenchyma formation in leaf sheaths of rice genotypes displaying a quiescence or escape strategy for flooding tolerance

    Get PDF
    Background and Aims Rice is one of the few crops able to withstand periods of partial or even complete submergence. One of the adaptive traits of rice is the constitutive presence and further development of aerenchyma which enables oxygen to be transported to submerged organs. The development of lysigenous aerenchyma is promoted by ethylene accumulating within the submerged plant tissues, although other signalling mechanisms may also co-exist. In this study, aerenchyma development was analysed in two rice (Oryza sativa) varieties, ‘FR13A’ and ‘Arborio Precoce’, which show opposite traits in flooding response in terms of internode elongation and survival. Methods The growth and survival of rice varieties under submergence was investigated in the leaf sheath of ‘FR13A’ and ‘Arborio Precoce’. The possible involvement of ethylene and reactive oxygen species (ROS) was evaluated in relation to aerenchyma formation. Cell viability and DNA fragmentation were determined by FDA/FM4-64 staining and TUNEL assay, respectively. Ethylene production was monitored by gas chromatography and by analysing ACO gene expression. ROS production was measured by using Amplex Red assay kit and the fluorescent dye DCFH2-DA. The expression of APX1 was also evaluated. AVG and DPI solutions were used to test the effect of inhibiting ethylene biosynthesis and ROS production, respectively. Key Results Both the varieties displayed constitutive lysigenous aerenchyma formation, which was further enhanced when submerged. ‘Arborio Precoce’, which is characterized by fast elongation when submerged, showed active ethylene biosynthetic machinery associated with increased aerenchymatous areas. ‘FR13A’, which harbours the Sub1A gene that limits growth during oxygen deprivation, did not show any increase in ethylene production after submersion but still displayed increased aerenchyma. Hydrogen peroxide levels increased in ‘FR13A’ but not in ‘Arborio Precoce’. Conclusions While ethylene controls aerenchyma formation in the fast-elongating ‘Arborio Precoce’ variety, in ‘FR13A’ ROS accumulation plays an important role

    Whole genome sequence analysis suggests intratumoral heterogeneity in dissemination of breast cancer to lymph nodes.

    Get PDF
    BACKGROUND: Intratumoral heterogeneity may help drive resistance to targeted therapies in cancer. In breast cancer, the presence of nodal metastases is a key indicator of poorer overall survival. The aim of this study was to identify somatic genetic alterations in early dissemination of breast cancer by whole genome next generation sequencing (NGS) of a primary breast tumor, a matched locally-involved axillary lymph node and healthy normal DNA from blood. METHODS: Whole genome NGS was performed on 12 µg (range 11.1-13.3 µg) of DNA isolated from fresh-frozen primary breast tumor, axillary lymph node and peripheral blood following the DNA nanoball sequencing protocol. Single nucleotide variants, insertions, deletions, and substitutions were identified through a bioinformatic pipeline and compared to CIN25, a key set of genes associated with tumor metastasis. RESULTS: Whole genome sequencing revealed overlapping variants between the tumor and node, but also variants that were unique to each. Novel mutations unique to the node included those found in two CIN25 targets, TGIF2 and CCNB2, which are related to transcription cyclin activity and chromosomal stability, respectively, and a unique frameshift in PDS5B, which is required for accurate sister chromatid segregation during cell division. We also identified dominant clonal variants that progressed from tumor to node, including SNVs in TP53 and ARAP3, which mediates rearrangements to the cytoskeleton and cell shape, and an insertion in TOP2A, the expression of which is significantly associated with tumor proliferation and can segregate breast cancers by outcome. CONCLUSION: This case study provides preliminary evidence that primary tumor and early nodal metastasis have largely overlapping somatic genetic alterations. There were very few mutations unique to the involved node. However, significant conclusions regarding early dissemination needs analysis of a larger number of patient samples

    Finishing the euchromatic sequence of the human genome

    Get PDF
    The sequence of the human genome encodes the genetic instructions for human physiology, as well as rich information about human evolution. In 2001, the International Human Genome Sequencing Consortium reported a draft sequence of the euchromatic portion of the human genome. Since then, the international collaboration has worked to convert this draft into a genome sequence with high accuracy and nearly complete coverage. Here, we report the result of this finishing process. The current genome sequence (Build 35) contains 2.85 billion nucleotides interrupted by only 341 gaps. It covers ∼99% of the euchromatic genome and is accurate to an error rate of ∼1 event per 100,000 bases. Many of the remaining euchromatic gaps are associated with segmental duplications and will require focused work with new methods. The near-complete sequence, the first for a vertebrate, greatly improves the precision of biological analyses of the human genome including studies of gene number, birth and death. Notably, the human enome seems to encode only 20,000-25,000 protein-coding genes. The genome sequence reported here should serve as a firm foundation for biomedical research in the decades ahead

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Implantable Micro-Tissue Engineered Nerve Grafts To Maintain Regenerative Capacity And Facilitate Functional Recovery Following Nervous System Injury

    Full text link
    Delayed nerve repair often has poor functional recovery that results from theinability of host axons to reach and reform meaningful connections with the injured muscle. After nerve injury, axons in the distal nerve undergo Wallerian degeneration and Schwann cells temporarily form a pro-regenerative environment that promotes axon regeneration and facilitates muscle reinnervation. Over time, a prolonged period without axonal contact in the distal nerve leads to the degradation of the bands of Büngner, diminishing the potential for muscle reinnervaiton and ultimately functional recovery. Previous studies have shown that early reinnervation using axons from otherwise healthy nerves can promote functional recovery. However, there are no commercially available technologies that provide exogenous axons in the otherwise distal nerve. This dissertation describes the engineering of an implantable microtissue designed to maintain the regenerative capacity and ultimately improve functional recovery following severe peripheral nerve injury. Moreover, emphasis is given to understanding the physiology underlying nerve injury and its relationship to the clinical challenges in peripheral nerve repair, clinically available various repair strategies, and the conception of our novel constructs from a translational perspective. Finally, this dissertation concludes with a prospective look at the field of peripheral nerve repair through the lens of these potentially transformative constructs. Pursuant to the first aim of this dissertation, stretch-grown tissue engineered nervegrafts (TENG) are evaluated as a novel approach for simultaneously facilitating axon regeneration and preserving the regenerative capacity in two clinically relevant porcine models of peripheral nerve injury. Pursuant to the second aim of this dissertation, development and characterization of a miniaturized tissue engineered nerve graft (micro- TENG) designed to be a more translatable alternative for preserving the regenerative capacity via minimally invasive injection into the nerve was completed. Additionally, advanced fabrication methodologies were employed, including the optogenetic stimulation and aligned Schwann cells embedded in the construct. For completion of the third aim of this dissertation, the efficacy of micro-TENGs to preserve the regenerative capacity and improve functional recovery was evaluated in a rodent model of delayed nerve repair and chronic axotomy. Collectively, this work shows that micro-TENGs integrate with denervated distal structures and preserve the regenerative capacity during prolonged periods without host innervation. By repopulating the distal sheath with exogenous axons, micro-TENGs also enable delayed nerve fusion, which was previously not achievable due to axon degradation after Wallerian degeneration. Furthermore, greater electrophysiological recovery, axon maturation, and muscle reinnervation was observed at 1 month following delayed nerve repair. Based on these findings, micro-TENGs appear to represent a transformative approach for restorative peripheral nerve surgery and potentially offer the possibility for functional recovery where virtually no hope currently exists
    corecore