41 research outputs found

    Effect of angiotensin-converting enzyme inhibitor and angiotensin receptor blocker initiation on organ support-free days in patients hospitalized with COVID-19

    Get PDF
    IMPORTANCE Overactivation of the renin-angiotensin system (RAS) may contribute to poor clinical outcomes in patients with COVID-19. Objective To determine whether angiotensin-converting enzyme (ACE) inhibitor or angiotensin receptor blocker (ARB) initiation improves outcomes in patients hospitalized for COVID-19. DESIGN, SETTING, AND PARTICIPANTS In an ongoing, adaptive platform randomized clinical trial, 721 critically ill and 58 non–critically ill hospitalized adults were randomized to receive an RAS inhibitor or control between March 16, 2021, and February 25, 2022, at 69 sites in 7 countries (final follow-up on June 1, 2022). INTERVENTIONS Patients were randomized to receive open-label initiation of an ACE inhibitor (n = 257), ARB (n = 248), ARB in combination with DMX-200 (a chemokine receptor-2 inhibitor; n = 10), or no RAS inhibitor (control; n = 264) for up to 10 days. MAIN OUTCOMES AND MEASURES The primary outcome was organ support–free days, a composite of hospital survival and days alive without cardiovascular or respiratory organ support through 21 days. The primary analysis was a bayesian cumulative logistic model. Odds ratios (ORs) greater than 1 represent improved outcomes. RESULTS On February 25, 2022, enrollment was discontinued due to safety concerns. Among 679 critically ill patients with available primary outcome data, the median age was 56 years and 239 participants (35.2%) were women. Median (IQR) organ support–free days among critically ill patients was 10 (–1 to 16) in the ACE inhibitor group (n = 231), 8 (–1 to 17) in the ARB group (n = 217), and 12 (0 to 17) in the control group (n = 231) (median adjusted odds ratios of 0.77 [95% bayesian credible interval, 0.58-1.06] for improvement for ACE inhibitor and 0.76 [95% credible interval, 0.56-1.05] for ARB compared with control). The posterior probabilities that ACE inhibitors and ARBs worsened organ support–free days compared with control were 94.9% and 95.4%, respectively. Hospital survival occurred in 166 of 231 critically ill participants (71.9%) in the ACE inhibitor group, 152 of 217 (70.0%) in the ARB group, and 182 of 231 (78.8%) in the control group (posterior probabilities that ACE inhibitor and ARB worsened hospital survival compared with control were 95.3% and 98.1%, respectively). CONCLUSIONS AND RELEVANCE In this trial, among critically ill adults with COVID-19, initiation of an ACE inhibitor or ARB did not improve, and likely worsened, clinical outcomes. TRIAL REGISTRATION ClinicalTrials.gov Identifier: NCT0273570

    Association of Respiratory Parameters at Venovenous Extracorporeal Membrane Oxygenation Liberation With Duration of Mechanical Ventilation and ICU Length of Stay: A Prospective Cohort Study

    No full text
    OBJECTIVES: Although the criteria for initiation of venovenous extracorporeal membrane oxygenation (VV ECMO) are well defined, the criteria and timing for VV ECMO decannulation are less certain. The aim of this study was to describe the ventilation and physiologic factors at the time of VV ECMO decannulation and to determine if these factors have association with mechanical ventilation or ICU length of stay after ECMO decannulation. DESIGN: Multicenter, prospective cohort study. SETTING: Eleven ICUs in Australia. PATIENTS: Adult patients treated with VV ECMO from March 19, 2019, to September 20, 2020. INTERVENTIONS: Liberation from VV ECMO. RESULTS: Of 87 patients receiving VV ECMO, the median age was 49 years (interquartile range, 37-59 yr), 61 of 87 (70%) were male, and 52/87 (60%) had a diagnosis of acute respiratory distress syndrome. There were 24 of 87 patients (28%) who died prior to day 90. No patient required a second run of VV ECMO. In a multivariate models, a higher partial pressure of arterial carbon dioxide (p < 0.01) and respiratory rate at the time of decannulation (p = 0.01) were predictive of a longer duration of mechanical ventilation and ICU length of stay postdecannulation in survivors. Higher positive end-expiratory pressure at ECMO decannulation was associated with shorter duration of ICU length of stay post-ECMO decannulation in survivors (p = 0.01). CONCLUSIONS: A higher partial pressure of arterial carbon dioxide and higher respiratory rate at ECMO decannulation were associated with increased duration of mechanical ventilation and increased duration of ICU stay postdecannulation, and increased positive end-expiratory pressure at decannulation was associated with decreased duration of ICU stay postdecannulation. Future research should further investigate these associations to establish the optimal ventilator settings and timing of liberation from VV ECMO

    The effect of restrictive versus liberal selection criteria on survival in ECPR: a retrospective analysis of a multi-regional dataset

    No full text
    Abstract Background Extracorporeal cardiopulmonary resuscitation (ECPR) is an established rescue therapy for both out-of-hospital cardiac arrest (OHCA) and in-hospital cardiac arrest (IHCA). However, there remains significant heterogeneity in populations and outcomes across different studies. The primary aim of this study was to compare commonly used selection criteria and their effect on survival and utilisation in an Australian ECPR cohort. Methods We performed a retrospective, observational study of three established ECPR centres in Australia, including cases from 1 January 2013 to 31 December 2020 to establish the baseline cohort. We applied five commonly used ECPR selection criteria, ranging from restrictive to liberal. Results The baseline cohort included 199 ECPR cases: 95 OHCA and 104 IHCA patients. Survival to hospital discharge was 20% for OHCA and 41.4% for IHCA. For OHCA patients, strictly applying the most restrictive criteria would have resulted in the highest survival rate 7/16 (43.8%) compared to the most liberal criteria 16/73 (21.9%). However, only 16/95 (16.8%) in our cohort strictly met the most restrictive criteria versus 73/95 (76.8%) with the most liberal criteria. Similarly, in IHCA, the most restrictive criteria would have resulted in a higher survival rate in eligible patients 10/15 (66.7%) compared to 27/59 (45.8%) with the most liberal criteria. With all criteria a large portion of survivors in IHCA would not have been eligible for ECMO if strictly applying criteria, 33/43 (77%) with restrictive and 16/43 (37%) with the most liberal criteria. Conclusions Adherence to different selection criteria impacts both the ECPR survival rate and the total number of survivors. Commonly used selection criteria may be unsuitable to select IHCA ECPR patients

    Nutrition Management for Critically and Acutely Unwell Hospitalised Patients with COVID-19 in Australia and New Zealand

    No full text
    Coronavirus disease 2019 (COVID-19) results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical features and subsequent medical treatment, combined with the impact of a global pandemic, require specific nutritional therapy in hospitalised adults. This document aims to provide Australian and New Zealand clinicians with guidance on managing critically and acutely unwell adult patients hospitalised with COVID-19. These recommendations were developed using expert consensus, incorporating the documented clinical signs and metabolic processes associated with COVID-19, the literature from other respiratory illnesses, in particular Acute Respiratory Distress Syndrome, and published guidelines for medical management of COVID-19 and general nutrition and intensive care. Patients hospitalised with COVID-19 are likely to have pre-existing comorbidities, and the ensuing inflammatory response may result in increased metabolic demands, protein catabolism, and poor glycaemic control. Common medical interventions, including deep sedation, early mechanical ventilation, fluid restriction, and management in the prone position, may exacerbate gastrointestinal dysfunction and effect nutritional intake. Nutrition care should be tailored to pandemic capacity, with early gastric feeding commenced using an algorithm to provide nutrition for the first 5-7 days in lower nutritional risk patients, and individualised care for high nutritional risk patients where capacity allows. Indirect calorimetry should be avoided due to potential aerosole exposure and therefore infection risk to health care providers. Use of a volume-controlled, higher-protein enteral formula and gastric residual volume monitoring should be initiated. Careful monitoring, particularly post-ICU, is required to ensure appropriate nutrition delivery to prevent muscle deconditioning and aid recovery. The infectious nature of SARS-CoV-2 and the expected high volume of patient admissions will require contingency planning to optimise staffing resources including up-skilling, ensure adequate nutrition supplies, facilitate remote consultations and optimise foodservice management. These guidelines provide recommendations on how to manage the above aspects when providing nutrition support to patients during the SARS-CoV-2 pandemic

    Implementation of Recommendations on the Use of Corticosteroids in Severe COVID-19

    Get PDF
    IMPORTANCE: Research diversity and representativeness are paramount in building trust, generating valid biomedical knowledge, and possibly in implementing clinical guidelines.OBJECTIVES: To compare variations over time and across World Health Organization (WHO) geographic regions of corticosteroid use for treatment of severe COVID-19; secondary objectives were to evaluate the association between the timing of publication of the RECOVERY (Randomised Evaluation of COVID-19 Therapy) trial (June 2020) and the WHO guidelines for corticosteroids (September 2020) and the temporal trends observed in corticosteroid use by region and to describe the geographic distribution of the recruitment in clinical trials that informed the WHO recommendation.DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study of 434 851 patients was conducted between January 31, 2020, and September 2, 2022, in 63 countries worldwide. The data were collected under the auspices of the International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC)-WHO Clinical Characterisation Protocol for Severe Emerging Infections. Analyses were restricted to patients hospitalized for severe COVID-19 (a subset of the ISARIC data set).EXPOSURE: Corticosteroid use as reported to the ISARIC-WHO Clinical Characterisation Protocol for Severe Emerging Infections.MAIN OUTCOMES AND MEASURES: Number and percentage of patients hospitalized with severe COVID-19 who received corticosteroids by time period and by WHO geographic region.RESULTS: Among 434 851 patients with confirmed severe or critical COVID-19 for whom receipt of corticosteroids could be ascertained (median [IQR] age, 61.0 [48.0-74.0] years; 53.0% male), 174 307 (40.1%) received corticosteroids during the study period. Of the participants in clinical trials that informed the guideline, 91.6% were recruited from the United Kingdom. In all regions, corticosteroid use for severe COVID-19 increased, but this increase corresponded to the timing of the RECOVERY trial (time-interruption coefficient 1.0 [95% CI, 0.9-1.2]) and WHO guideline (time-interruption coefficient 1.9 [95% CI, 1.7-2.0]) publications only in Europe. At the end of the study period, corticosteroid use for treatment of severe COVID-19 was highest in the Americas (5421 of 6095 [88.9%]; 95% CI, 87.7-90.2) and lowest in Africa (31 588 of 185 191 [17.1%]; 95% CI, 16.8-17.3).CONCLUSIONS AND RELEVANCE: The results of this cohort study showed that implementation of the guidelines for use of corticosteroids in the treatment of severe COVID-19 varied geographically. Uptake of corticosteroid treatment was lower in regions with limited clinical trial involvement. Improving research diversity and representativeness may facilitate timely knowledge uptake and guideline implementation.</p

    Implementation of Recommendations on the Use of Corticosteroids in Severe COVID-19

    Get PDF
    IMPORTANCE: Research diversity and representativeness are paramount in building trust, generating valid biomedical knowledge, and possibly in implementing clinical guidelines.OBJECTIVES: To compare variations over time and across World Health Organization (WHO) geographic regions of corticosteroid use for treatment of severe COVID-19; secondary objectives were to evaluate the association between the timing of publication of the RECOVERY (Randomised Evaluation of COVID-19 Therapy) trial (June 2020) and the WHO guidelines for corticosteroids (September 2020) and the temporal trends observed in corticosteroid use by region and to describe the geographic distribution of the recruitment in clinical trials that informed the WHO recommendation.DESIGN, SETTING, AND PARTICIPANTS: This prospective cohort study of 434 851 patients was conducted between January 31, 2020, and September 2, 2022, in 63 countries worldwide. The data were collected under the auspices of the International Severe Acute Respiratory and Emerging Infections Consortium (ISARIC)-WHO Clinical Characterisation Protocol for Severe Emerging Infections. Analyses were restricted to patients hospitalized for severe COVID-19 (a subset of the ISARIC data set).EXPOSURE: Corticosteroid use as reported to the ISARIC-WHO Clinical Characterisation Protocol for Severe Emerging Infections.MAIN OUTCOMES AND MEASURES: Number and percentage of patients hospitalized with severe COVID-19 who received corticosteroids by time period and by WHO geographic region.RESULTS: Among 434 851 patients with confirmed severe or critical COVID-19 for whom receipt of corticosteroids could be ascertained (median [IQR] age, 61.0 [48.0-74.0] years; 53.0% male), 174 307 (40.1%) received corticosteroids during the study period. Of the participants in clinical trials that informed the guideline, 91.6% were recruited from the United Kingdom. In all regions, corticosteroid use for severe COVID-19 increased, but this increase corresponded to the timing of the RECOVERY trial (time-interruption coefficient 1.0 [95% CI, 0.9-1.2]) and WHO guideline (time-interruption coefficient 1.9 [95% CI, 1.7-2.0]) publications only in Europe. At the end of the study period, corticosteroid use for treatment of severe COVID-19 was highest in the Americas (5421 of 6095 [88.9%]; 95% CI, 87.7-90.2) and lowest in Africa (31 588 of 185 191 [17.1%]; 95% CI, 16.8-17.3).CONCLUSIONS AND RELEVANCE: The results of this cohort study showed that implementation of the guidelines for use of corticosteroids in the treatment of severe COVID-19 varied geographically. Uptake of corticosteroid treatment was lower in regions with limited clinical trial involvement. Improving research diversity and representativeness may facilitate timely knowledge uptake and guideline implementation.</p

    Nutrition management for critically and acutely unwell hospitalised patients with coronavirus disease 2019 (COVID-19) in Australia and New Zealand

    No full text
    Coronavirus disease 2019 (COVID-19) results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical features and subsequent medical treatment, combined with the impact of a global pandemic, require specific nutritional therapy in hospitalised adults. This document aims to provide Australian and New Zealand clinicians with guidance on managing critically and acutely unwell adult patients hospitalised with COVID-19. These recommendations were developed using expert consensus, incorporating the documented clinical signs and metabolic processes associated with COVID-19, the literature from other respiratory illnesses, in particular acute respiratory distress syndrome, and published guidelines for medical management of COVID-19 and general nutrition and intensive care. Patients hospitalised with COVID-19 are likely to have preexisting comorbidities, and the ensuing inflammatory response may result in increased metabolic demands, protein catabolism, and poor glycaemic control. Common medical interventions, including deep sedation, early mechanical ventilation, fluid restriction, and management in the prone position, may exacerbate gastrointestinal dysfunction and affect nutritional intake. Nutrition care should be tailored to pandemic capacity, with early gastric feeding commenced using an algorithm to provide nutrition for the first 5–7 days in lower-nutritional-risk patients and individualised care for high-nutritional-risk patients where capacity allows. Indirect calorimetry should be avoided owing to potential aerosole exposure and therefore infection risk to healthcare providers. Use of a volume-controlled, higher-protein enteral formula and gastric residual volume monitoring should be initiated. Careful monitoring, particularly after intensive care unit stay, is required to ensure appropriate nutrition delivery to prevent muscle deconditioning and aid recovery. The infectious nature of SARS-CoV-2 and the expected high volume of patient admissions will require contingency planning to optimise staffing resources including upskilling, ensure adequate nutrition supplies, facilitate remote consultations, and optimise food service management. These guidelines provide recommendations on how to manage the aforementioned aspects when providing nutrition support to patients during the SARS-CoV-2 pandemic

    Nutrition management for critically and acutely unwell hospitalised patients with coronavirus disease 2019 (COVID-19) in Australia and New Zealand

    No full text
    Coronavirus disease 2019 (COVID-19) results from severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). The clinical features and subsequent medical treatment, combined with the impact of a global pandemic, require specific nutritional therapy in hospitalised adults. This document aims to provide Australian and New Zealand clinicians with guidance on managing critically and acutely unwell adult patients hospitalised with COVID-19. These recommendations were developed using expert consensus, incorporating the documented clinical signs and metabolic processes associated with COVID-19, the literature from other respiratory illnesses, in particular acute respiratory distress syndrome, and published guidelines for medical management of COVID-19 and general nutrition and intensive care. Patients hospitalised with COVID-19 are likely to have preexisting comorbidities, and the ensuing inflammatory response may result in increased metabolic demands, protein catabolism, and poor glycaemic control. Common medical interventions, including deep sedation, early mechanical ventilation, fluid restriction, and management in the prone position, may exacerbate gastrointestinal dysfunction and affect nutritional intake. Nutrition care should be tailored to pandemic capacity, with early gastric feeding commenced using an algorithm to provide nutrition for the first 5–7 days in lower-nutritional-risk patients and individualised care for high-nutritional-risk patients where capacity allows. Indirect calorimetry should be avoided owing to potential aerosol exposure and therefore infection risk to healthcare providers. Use of a volume-controlled, higher-protein enteral formula and gastric residual volume monitoring should be initiated. Careful monitoring, particularly after intensive care unit stay, is required to ensure appropriate nutrition delivery to prevent muscle deconditioning and aid recovery. The infectious nature of SARS-CoV-2 and the expected high volume of patient admissions will require contingency planning to optimise staffing resources including upskilling, ensure adequate nutrition supplies, facilitate remote consultations, and optimise food service management. These guidelines provide recommendations on how to manage the aforementioned aspects when providing nutrition support to patients during the SARS-CoV-2 pandemic

    The effect of hyperoxia on inflammation and platelet responses in an ex vivo extracorporeal membrane oxygenation circuit

    No full text
    Use of extracorporeal membrane oxygenation (ECMO) is expanding, however, it is still associated with significant morbidity and mortality. Activation of inflammatory and innate immune responses and hemostatic alterations contribute to complications. Hyperoxia may play a role in exacerbating these responses. Nine ex vivo ECMO circuits were tested using fresh healthy human whole blood, with two oxygen levels: 21% inspired fraction of oxygen (FiO(2); mild hyperoxia; n = 5) and 100% FiO(2)(severe hyperoxia; n = 4). Serial blood samples were taken for analysis of platelet aggregometry, leukocyte activation, inflammatory, and oxidative stress markers. ECMO resulted in reduced adenosine diphosphate- (P < .05) and thrombin receptor activating peptide-induced (P < .05) platelet aggregation, as well as increasing levels of the neutrophil activation marker, neutrophil elastase (P = .013). Additionally, levels of the inflammatory chemokine interleukin-8 were elevated (P < .05) and the activity of superoxide dismutase, a marker of oxidative stress, was increased (P = .002). Hyperoxia did not augment these responses, with no significant differences detected between mild and severe hyperoxia. Our ex vivo model of ECMO revealed that the circuit itself triggers a pro-inflammatory and oxidative stress response, however, exposure to supra-physiologic oxygen does not amplify that response. Extended-duration studies and inclusion of an endothelial component could be beneficial in characterizing longer term changes
    corecore