17 research outputs found

    Initial Acoustoelastic Measurements in Olivine: Investigating the Effect of Stress on P- and S-Wave Velocities

    Get PDF
    It is well known that elasticity is a key physical property in the determination of the structure and composition of the Earth and provides critical information for the interpretation of seismic data. This study investigates the stress-induced variation in elastic wave velocities, known as the acoustoelastic effect, in San Carlos olivine. A recently developed experimental ultrasonic acoustic system, the Directly Integrated Acoustic System Combined with Pressure Experiments (DIASCoPE), was used with the D-DIA multi-anvil apparatus to transmit ultrasonic sound waves and collect the reflections. We use the DIASCoPE to obtain longitudinal (P) and shear (S) elastic wave velocities from San Carlos olivine at pressures ranging from 3.2–10.5 GPa and temperatures from 450–950°C which we compare to the stress state in the D-DIA derived from synchrotron X-ray diffraction. We use elastic-plastic self-consistent (EPSC) numerical modeling to forward model X-ray diffraction data collected in D-DIA experiments to obtain the macroscopic stress on our sample. We can observe the relationship between the relative elastic wave velocity change (ΔV/V) and macroscopic stress to determine the acoustoelastic constants, and interpret our observations using the linearized first-order equation based on the model proposed by Hughes and Kelly (1953), https://doi.org/10.1103/physrev.92.1145. This work supports the presence of the acoustoelastic effect in San Carlos olivine, which can be measured as a function of pressure and temperature. This study will aid in our understanding of the acoustoelastic effect and provide a new experimental technique to measure the stress state in elastically deformed geologic materials at high pressure conditions

    Predictive Modeling of Radiological Background Using Geochemistry

    Full text link
    Introduction & Background Methods Models Results and Discussion Future Wor

    Elastic plastic self-consistent (EPSC) modeling of plastic deformation in fayalite olivine

    Full text link
    Elastic plastic self-consistent (EPSC) simulations are used to model synchrotron X-ray diffraction observations from deformation experiments on fayalite olivine using the deformation DIA apparatus. Consistent with results from other in situ diffraction studies of monomineralic polycrystals, the results show substantial variations in stress levels among grain populations. Rather than averaging the lattice reflection stresses or choosing a single reflection to determine the macroscopic stress supported by the specimen, an EPSC simulation is used to forward model diffraction data and determine a macroscopic stress that is consistent with lattice strains of all measured diffraction lines. The EPSC simulation presented here includes kink band formation among the plastic deformation mechanisms in the simulation. The inclusion of kink band formation is critical to the success of the models. This study demonstrates the importance of kink band formation as an accommodation mechanism during plastic deformation of olivine as well as the utility of using EPSC models to interpret diffraction from in situ deformation experiments

    Elastic Plastic Self-Consistent (EPSC) Modeling of San Carlos Olivine Deformed in a D-DIA Apparatus

    Full text link
    We present a suite of low strain deformation experiments conducted on polycrystalline San Carlos olivine in a deformation DIA apparatus at temperatures ranging from 440 to 1106 °C at pressures between 3.8 and 4.6 GPa. The deformation behavior was monitored using in situ diffraction of white synchrotron X‑rays. The experiments were conducted at a slow strain rate of ~5 × 10–6/s so as to allow the initial elastic behavior to be closely monitored. For each experiment, we fit the diffraction data using elastic plastic self-consistent (EPSC) models. We find that to model the experiments we must incorporate an isotropic deformation mechanism that permits a small amount of non-elastic deformation during the initial elastic portion of the experiment. This deformation mechanism mimics the observed reduction in the elastic modulus as a function of temperature and permits us to better model the remainder of the stress strain curve. The critical resolved shear stresses (CRSS) for slip obtained from these models compare well with those measured in single-crystal deformation experiment
    corecore