258 research outputs found
Preferred EAC initiation sites in 7xxx aluminum
Please click Additional Files below to see the full abstrac
A Human Atrial Natriuretic Peptide Gene Mutation Reveals a Novel Peptide With Enhanced Blood Pressure-Lowering, Renal-Enhancing, and Aldosterone-Suppressing Actions
ObjectivesWe sought to determine the physiologic actions and potential therapeutic applications of mutant atrial natriuretic peptide (mANP).BackgroundThe cardiac hormone atrial natriuretic peptide (ANP) is a 28-amino acid (AA) peptide that consists of a 17-AA ring structure together with a 6-AA N-terminus and a 5-AA C-terminus. In a targeted scan for sequence variants within the human ANP gene, a mutation was identified that results in a 40-AA peptide consisting of native ANP(1-28)and a C-terminal extension of 12 AA. We have termed this peptide mutant ANP.MethodsIn vitro 3′,5′-cyclic guanosine monophosphate (cGMP) activation in response to mANP was studied in cultured human cardiac fibroblasts known to express natriuretic peptide receptor A. The cardiorenal and neurohumoral properties of mANP compared with ANP were assessed in vivo in normal dogs.ResultsWe observed an incremental in vitro cGMP dose response with increasing concentrations of mANP. In vivo with high-dose mANP (33 pmol/kg/min), we observed significantly greater plasma cGMP activation, diuretic, natriuretic, glomerular filtration rate enhancing, renin-angiotensin-aldosterone system inhibiting, cardiac unloading, and blood pressure lowering properties when compared with native ANP. Low-dose mANP (2 pmol/kg/min) has natriuretic and diuretic properties without altering systemic hemodynamics compared with no natriuretic or diuretic response with low-dose native ANP.ConclusionsThese studies establish that mANP activates cGMP in vitro and exerts greater and more sustained natriuretic, diuretic, glomerular filtration rate, and renal blood flow enhancing actions than native ANP in vivo
Unravelling the transport mechanism of pore-filled membranes for hydrogen separation
The permeation characteristics of palladium pore filled (PF) membranes have been investigated with gas permeation and structural characterization of the membranes. PF membranes have been prepared by filling with Pd the nanoporous γ-Al2O3/YSZ (or pure YSZ) layer supported onto porous α-Al2O3 and ZrO2. The number of nanoporous layers and the applied vacuum level during the electroless plating process have been studied. Gas permeation properties of the PF membranes have been determined in a temperature range of 300-550 °C. The measured hydrogen permeances have been found to be lower than previously reported for similar membranes. It has been found that the hydrogen fluxes do not depend on the thickness of the nanoporous layers (γ-Al2O3/YSZ or pure YSZ) or on the vacuum pump employed for filling with Pd. The physicochemical characterization performed showed that the palladium deposited does not form a percolated network across the mesoporous layer(s), leading to low hydrogen permeances and thus low H2/N2 perm-selectivities.The presented work is funded within FERRET project as part of European Union’s Seventh
Framework Programme (FP7/2007-2013) for the Fuel Cells and Hydrogen Joint Technology
Initiative under grant agreement n° 621181.
The Talos TEM was funded as part of HEFCE funding in the UK
Research Partnership Investment Funding (UKRPIF) Manchester RPIF Round 2
Multiscale correlative characterization of environmentally assisted crack initiation, propagation and failure in a high strength AA5083 H131 alloy
Environmentally assisted cracking in a high strength AA5083 H131 alloy has been investigated using a multiscale correlative characterization approach to understand the surface intergranular corrosion to environmentally assisted crack (EAC) transition. Time-lapse 3D synchrotron X-ray tomography was employed during slow strain testing of a sensitized AA5083 sample sensitized at 80 °C for 250 h. In addition, several of the specimens tested were pre-exposed to a chloride containing environment to induce corrosion sites which could act as ‘realistic’ stress raisers in the subsequent straining. Reconstructed volumes of the X-ray CT time-lapse series allowed us to track and follow crack propagation in the material during slow strain rate testing at high resolution \u3c5 µm. Volumes of interest from the test samples identified from the X-ray CT reconstructions were further analyzed post-mortem using electron microscopy and spectroscopy based techniques to study the presence and chemistry of secondary phases such as those based on Mg-Si, and their role in the initiation, propagation and/or arrest of crack tips/fronts
Recommended from our members
Exercise plasma metabolomics and xenometabolomics in obese, sedentary, insulin-resistant women: impact of a fitness and weight loss intervention
Insulin resistance has wide-ranging effects on metabolism, but there are knowledge gaps regarding the tissue origins of systemic metabolite patterns and how patterns are altered by fitness and metabolic health. To address these questions, plasma metabolite patterns were determined every 5 min during exercise (30 min, ∼45% of V̇o2peak, ∼63 W) and recovery in overnight-fasted sedentary, obese, insulin-resistant women under controlled conditions of diet and physical activity. We hypothesized that improved fitness and insulin sensitivity following a ∼14-wk training and weight loss intervention would lead to fixed workload plasma metabolomics signatures reflective of metabolic health and muscle metabolism. Pattern analysis over the first 15 min of exercise, regardless of pre- versus postintervention status, highlighted anticipated increases in fatty acid tissue uptake and oxidation (e.g., reduced long-chain fatty acids), diminution of nonoxidative fates of glucose [e.g., lowered sorbitol-pathway metabolites and glycerol-3-galactoside (possible glycerolipid synthesis metabolite)], and enhanced tissue amino acid use (e.g., drops in amino acids; modest increase in urea). A novel observation was that exercise significantly increased several xenometabolites ("non-self" molecules, from microbes or foods), including benzoic acid-salicylic acid-salicylaldehyde, hexadecanol-octadecanol-dodecanol, and chlorogenic acid. In addition, many nonannotated metabolites changed with exercise. Although exercise itself strongly impacted the global metabolome, there were surprisingly few intervention-associated differences despite marked improvements in insulin sensitivity, fitness, and adiposity. These results and previously reported plasma acylcarnitine profiles support the principle that most metabolic changes during submaximal aerobic exercise are closely tethered to absolute ATP turnover rate (workload), regardless of fitness or metabolic health status
Characterisation of microvessel blood velocity and segment length in the brain using multi-diffusion-time diffusion-weighted MRI
From SAGE Publishing via Jisc Publications RouterHistory: received 2020-05-13, rev-recd 2020-10-24, accepted 2020-10-27, epub 2020-12-16Publication status: PublishedMulti-diffusion-time diffusion-weighted MRI can probe tissue microstructure, but the method has not been widely applied to the microvasculature. At long diffusion-times, blood flow in capillaries is in the diffusive regime, and signal attenuation is dependent on blood velocity (v) and capillary segment length (l). It is described by the pseudo-diffusion coefficient (D*=vl/6) of intravoxel incoherent motion (IVIM). At shorter diffusion-times, blood flow is in the ballistic regime, and signal attenuation depends on v, and not l. In theory, l could be estimated using D* and v. In this study, we compare the accuracy and repeatability of three approaches to estimating v, and therefore l: the IVIM ballistic model, the velocity autocorrelation model, and the ballistic approximation to the velocity autocorrelation model. Twenty-nine rat datasets from two strains were acquired at 7 T, with b-values between 0 and 1000 smm−2 and diffusion times between 11.6 and 50 ms. Five rats were scanned twice to assess scan-rescan repeatability. Measurements of l were validated using corrosion casting and micro-CT imaging. The ballistic approximation of the velocity autocorrelation model had lowest bias relative to corrosion cast estimates of l, and had highest repeatability
Readmissions after general surgery: a prospective multicenter audit
Background: Readmission rates after surgical procedures are viewed as a marker of quality
of care and as a driver to improve outcomes in the United Kingdom, they are not remunerated.
However, readmissions are not wholly avoidable. The aim of this study was to
develop a regional overview of readmissions to determine the proportion that might be
avoidable and to examine predictors of readmissions at a unit level.
Methods: We undertook a prospective multicenter audit of readmissions following National
Health Service funded general surgical procedures in five National Health Service hospitals
and three independent sector providers over a 2-wk period. Basic demographic and procedure
data were captured. Readmissions to hospitals were identified through acute admissions
lists. Reason for readmission was identified, and the readmission data assessed
by a senior surgical doctor as to whether it was avoidable.
Results: We identified 752 operations in the study period with all followed up to 30 d. The
overall rate of readmissions was 4.7%, with 40% of these judged as being potentially
avoidable. Pain and wound problems accounted for the vast majority of avoidable readmissions.
The number of unavoidable readmissions was correlated with the workload of
each center (r ¼ 0.63, P ¼ 0.06) and as with the higher (British United Provident Association)
complexity of surgery (r ¼ 0.90, P ¼ 0.01). Patient and demographic factors were not
associated with readmissions.
Conclusions: This prospective audit describes readmission rates after general surgery. Volume
and complexity of work are associated with readmission rates. A large proportion of
readmissions could be reduced by attention to analgesia and outpatient arrangements for
wound management
- …