5,089 research outputs found
EBSD mapping of herringbone domain structures in tetragonal piezoelectrics
Herringbone domain structures have been mapped using electron backscatter diffraction (EBSD) in two tetragonal piezoelectrics, lead zirconate titanate, [Pb(Zr,Ti)O<sub>3</sub>] and bismuth ferrite – lead titanate, [(PbTi)<sub>0.5</sub>(BiFe)<sub>0.5</sub>O<sub>3</sub>]. Analysis of the domain misorientations across the band junctions shows that the structures correspond very well to crystallographic models. High resolution mapping with a 20 nm step size allowed the crystal rotation across one of these band junctions in lead zirconate titanate to be studied in detail and allowed an improved estimation of the peak strain at the junction, of 0.56 GPa. The significance of this for crack nucleation and propagation in such materials is discussed
Analysis of high quality superconducting resonators: consequences for TLS properties in amorphous oxides
noise caused by microscopic Two-Level Systems (TLS) is known to be very
detrimental to the performance of superconducting quantum devices but the
nature of these TLS is still poorly understood. Recent experiments with
superconducting resonators indicates that interaction between TLS in the oxide
at the film-substrate interface is not negligible. Here we present data on the
loss and frequency noise from two different Nb resonators with and
without Pt capping and discuss what conclusions can be drawn regarding the
properties of TLS in amorphous oxides. We also estimate the concentration and
dipole moment of the TLS.Comment: 8 pages, 5 figure
Separable Structure of Many-Body Ground-State Wave Function
We have investigated a general structure of the ground-state wave function
for the Schr\"odinger equation for identical interacting particles (bosons
or fermions) confined in a harmonic anisotropic trap in the limit of large .
It is shown that the ground-state wave function can be written in a separable
form. As an example of its applications, this form is used to obtain the
ground-state wave function describing collective dynamics for trapped
bosons interacting via contact forces.Comment: J. Phys. B: At. Mol. Opt. Phys. 33 (2000) (accepted for publication
Theory of Bose-Einstein condensation for trapped atoms
We outline the general features of the conventional mean-field theory for the
description of Bose-Einstein condensates at near zero temperatures. This
approach, based on a phenomenological model, appears to give excellent
agreement with experimental data. We argue, however, that such an approach is
not rigorous and cannot contain the full effect of collisional dynamics due to
the presence of the mean-field. We thus discuss an alternative microscopic
approach and explain, within our new formalism, the physical origin of these
effects. Furthermore, we discuss the potential formulation of a consistent
finite-temperature mean-field theory, which we claim necessiates an analysis
beyond the conventional treatment.Comment: 12 pages. To appear in Phil. Trans. R. Soc. Lond. A 355 (1997
Blow-up of the hyperbolic Burgers equation
The memory effects on microscopic kinetic systems have been sometimes
modelled by means of the introduction of second order time derivatives in the
macroscopic hydrodynamic equations. One prototypical example is the hyperbolic
modification of the Burgers equation, that has been introduced to clarify the
interplay of hyperbolicity and nonlinear hydrodynamic evolution. Previous
studies suggested the finite time blow-up of this equation, and here we present
a rigorous proof of this fact
The Knudsen temperature jump and the Navier-Stokes hydrodynamics of granular gases driven by thermal walls
Thermal wall is a convenient idealization of a rapidly vibrating plate used
for vibrofluidization of granular materials. The objective of this work is to
incorporate the Knudsen temperature jump at thermal wall in the Navier-Stokes
hydrodynamic modeling of dilute granular gases of monodisperse particles that
collide nearly elastically. The Knudsen temperature jump manifests itself as an
additional term, proportional to the temperature gradient, in the boundary
condition for the temperature. Up to a numerical pre-factor of order unity,
this term is known from kinetic theory of elastic gases. We determine the
previously unknown numerical pre-factor by measuring, in a series of molecular
dynamics (MD) simulations, steady-state temperature profiles of a gas of
elastically colliding hard disks, confined between two thermal walls kept at
different temperatures, and comparing the results with the predictions of a
hydrodynamic calculation employing the modified boundary condition. The
modified boundary condition is then applied, without any adjustable parameters,
to a hydrodynamic calculation of the temperature profile of a gas of inelastic
hard disks driven by a thermal wall. We find the hydrodynamic prediction to be
in very good agreement with MD simulations of the same system. The results of
this work pave the way to a more accurate hydrodynamic modeling of driven
granular gases.Comment: 7 pages, 3 figure
Correlation of the Drag Characteristics of a Typical Pursuit Airplane Obtained from High-Speed Wind-Tunnel and Flight Tests
In order to obtain a correlation of drag data from wind-tunnel and flight tests at high Mach numbers, a typical pursuit airplane, with the propeller removed, was tested in flight at Mach numbers up to 0.755, and the results were compared with wind-tunnel tests of a 1/3-scale model of the airplane. The tests results show that the drag characteristics of the test airplane can be predicted with satisfactory accuracy from tests in the Ames 16-foot high-speed wind tunnel of the Ames Aeronautical Laboratory at both high and low Mach numbers. It is considered that this result is not unique with the airplane
Pre-exposure embrittlement of sensitized alumimium-magnesium alloy, 5083-H116
Environment-sensitive fracture of aluminum-magnesium alloys containing above ~3 wt% magnesium historically has been considered under anodic-dissolution control. Information from more recent studies, however, suggests a hydrogen-related process is also often involved. Further evidence supporting the involvement of a hydrogen-related process of during Intergranular stress corrosion cracking (IGSCC) will be presented using information gleaned from smooth and pre-cracked test specimens, previously sensitized over a range of temperatures in both ‘dry’ and ‘wet’ conditions and then subjected to rising-load testing in a range of environments. A detailed evaluation of the IGSCC using X-ray computed tomography to provide 3-D images and ultra-high-resolution electron microscopy to characterize selected regions within intergranular stress corrosion cracks enables mechanistic insights
Limitations of light delay and storage times in EIT experiments with condensates
We investigate the limitations arising from atomic collisions on the storage
and delay times of probe pulses in EIT experiments. We find that the atomic
collisions can be described by an effective decay rate that limits storage and
delay times. We calculate the momentum and temperature dependence of the decay
rate and find that it is necessary to excite atoms at a particular momentum
depending on temperature and spacing of the energy levels involved in order to
minimize the decoherence effects of atomic collisions.Comment: 4 pages RevTeX, 4 figures. Send correspondence to
[email protected]
- …