1,186 research outputs found

    The Self Model and the Conception of Biological Identity in Immunology

    Get PDF
    The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity

    Conformal Radiotherapy Facilitates the Delivery of Concurrent Chemotherapy and Radiotherapy: A Case of Primitive Neuroectodermal Tumour of the Chest Wall

    Get PDF
    We illustrate the principle of conformal radiotherapy by discussing the case of a patient with a primitive neuroectodermal tumour of the chest wall. Recent advances in radiotherapy planning enable precise localization of the planning target volume (PTV) and normal organs at risk of irradiation. Customized blocks are subsequently designed to produce a treatment field that ‘conforms’ to the PTV. The use of conformal radiotherapy (CRT) in this case facilitated the delivery of concurrent chemotherapy and radiotherapy by significantly reducing the volume of red marrow irradiated.The lack of acute and late toxicities was attributed to optimal exclusion of normal tissues from the treatment field, made possible by CRT

    A statistical mechanics approach to autopoietic immune networks

    Full text link
    The aim of this work is to try to bridge over theoretical immunology and disordered statistical mechanics. Our long term hope is to contribute to the development of a quantitative theoretical immunology from which practical applications may stem. In order to make theoretical immunology appealing to the statistical physicist audience we are going to work out a research article which, from one side, may hopefully act as a benchmark for future improvements and developments, from the other side, it is written in a very pedagogical way both from a theoretical physics viewpoint as well as from the theoretical immunology one. Furthermore, we have chosen to test our model describing a wide range of features of the adaptive immune response in only a paper: this has been necessary in order to emphasize the benefit available when using disordered statistical mechanics as a tool for the investigation. However, as a consequence, each section is not at all exhaustive and would deserve deep investigation: for the sake of completeness, we restricted details in the analysis of each feature with the aim of introducing a self-consistent model.Comment: 22 pages, 14 figur

    Randomly Evolving Idiotypic Networks: Structural Properties and Architecture

    Full text link
    We consider a minimalistic dynamic model of the idiotypic network of B-lymphocytes. A network node represents a population of B-lymphocytes of the same specificity (idiotype), which is encoded by a bitstring. The links of the network connect nodes with complementary and nearly complementary bitstrings, allowing for a few mismatches. A node is occupied if a lymphocyte clone of the corresponding idiotype exists, otherwise it is empty. There is a continuous influx of new B-lymphocytes of random idiotype from the bone marrow. B-lymphocytes are stimulated by cross-linking their receptors with complementary structures. If there are too many complementary structures, steric hindrance prevents cross-linking. Stimulated cells proliferate and secrete antibodies of the same idiotype as their receptors, unstimulated lymphocytes die. Depending on few parameters, the autonomous system evolves randomly towards patterns of highly organized architecture, where the nodes can be classified into groups according to their statistical properties. We observe and describe analytically the building principles of these patterns, which allow to calculate number and size of the node groups and the number of links between them. The architecture of all patterns observed so far in simulations can be explained this way. A tool for real-time pattern identification is proposed.Comment: 19 pages, 15 figures, 4 table
    • …
    corecore