1,186 research outputs found
The Self Model and the Conception of Biological Identity in Immunology
The self/non-self model, first proposed by F.M. Burnet, has dominated immunology for sixty years now. According to this model, any foreign element will trigger an immune reaction in an organism, whereas endogenous elements will not, in normal circumstances, induce an immune reaction. In this paper we show that the self/non-self model is no longer an appropriate explanation of experimental data in immunology, and that this inadequacy may be rooted in an excessively strong metaphysical conception of biological identity. We suggest that another hypothesis, one based on the notion of continuity, gives a better account of immune phenomena. Finally, we underscore the mapping between this metaphysical deflation from self to continuity in immunology and the philosophical debate between substantialism and empiricism about identity
Conformal Radiotherapy Facilitates the Delivery of Concurrent Chemotherapy and Radiotherapy: A Case of Primitive Neuroectodermal Tumour of the Chest Wall
We illustrate the principle of conformal radiotherapy by discussing the case of a patient with a primitive neuroectodermal
tumour of the chest wall. Recent advances in radiotherapy planning enable precise localization of the planning target volume
(PTV) and normal organs at risk of irradiation. Customized blocks are subsequently designed to produce a treatment field
that ‘conforms’ to the PTV. The use of conformal radiotherapy (CRT) in this case facilitated the delivery of concurrent
chemotherapy and radiotherapy by significantly reducing the volume of red marrow irradiated.The lack of acute and late
toxicities was attributed to optimal exclusion of normal tissues from the treatment field, made possible by CRT
A statistical mechanics approach to autopoietic immune networks
The aim of this work is to try to bridge over theoretical immunology and
disordered statistical mechanics. Our long term hope is to contribute to the
development of a quantitative theoretical immunology from which practical
applications may stem. In order to make theoretical immunology appealing to the
statistical physicist audience we are going to work out a research article
which, from one side, may hopefully act as a benchmark for future improvements
and developments, from the other side, it is written in a very pedagogical way
both from a theoretical physics viewpoint as well as from the theoretical
immunology one.
Furthermore, we have chosen to test our model describing a wide range of
features of the adaptive immune response in only a paper: this has been
necessary in order to emphasize the benefit available when using disordered
statistical mechanics as a tool for the investigation. However, as a
consequence, each section is not at all exhaustive and would deserve deep
investigation: for the sake of completeness, we restricted details in the
analysis of each feature with the aim of introducing a self-consistent model.Comment: 22 pages, 14 figur
Randomly Evolving Idiotypic Networks: Structural Properties and Architecture
We consider a minimalistic dynamic model of the idiotypic network of
B-lymphocytes. A network node represents a population of B-lymphocytes of the
same specificity (idiotype), which is encoded by a bitstring. The links of the
network connect nodes with complementary and nearly complementary bitstrings,
allowing for a few mismatches. A node is occupied if a lymphocyte clone of the
corresponding idiotype exists, otherwise it is empty. There is a continuous
influx of new B-lymphocytes of random idiotype from the bone marrow.
B-lymphocytes are stimulated by cross-linking their receptors with
complementary structures. If there are too many complementary structures,
steric hindrance prevents cross-linking. Stimulated cells proliferate and
secrete antibodies of the same idiotype as their receptors, unstimulated
lymphocytes die.
Depending on few parameters, the autonomous system evolves randomly towards
patterns of highly organized architecture, where the nodes can be classified
into groups according to their statistical properties. We observe and describe
analytically the building principles of these patterns, which allow to
calculate number and size of the node groups and the number of links between
them. The architecture of all patterns observed so far in simulations can be
explained this way. A tool for real-time pattern identification is proposed.Comment: 19 pages, 15 figures, 4 table
Recommended from our members
Conformal radiotherapy facilitates the delivery of concurrent chemotherapy and radiotherapy: a case of primitive neuroectodermal tumour of the chest wall.
We illustrate the principle of conformal radiotherapy by discussing the case of a patient with a primitive neuroectodermal tumour of the chest wall. Recent advances in radiotherapy planning enable precise localization of the planning target volume (PTV) and normal organs at risk of irradiation. Customized blocks are subsequently designed to produce a treatment field that 'conforms' to the PTV. The use of conformal radiotherapy (CRT) in this case facilitated the delivery of concurrent chemotherapy and radiotherapy by significantly reducing the volume of red marrow irradiated.The lack of acute and late toxicities was attributed to optimal exclusion of normal tissues from the treatment field, made possible by CRT.Peer Reviewe
- …