615 research outputs found
Convenient Labelling Technique for Mass Spectrometry - Acid Catalyzed Deuterium and Oxygen-18 Exchange via Gas-liquid Chromatography
Mass spectrometry labelling technique - acid catalyzed deuterium and oxygen 18 exchange by gas-liquid chromatograph
Revealing nascent proteomics in signaling pathways and cell differentiation.
Regulation of gene expression at the level of protein synthesis is a crucial element in driving how the genetic landscape is expressed. However, we are still limited in technologies that can quantitatively capture the immediate proteomic changes that allow cells to respond to specific stimuli. Here, we present a method to capture and identify nascent proteomes in situ across different cell types without disturbing normal growth conditions, using O-propargyl-puromycin (OPP). Cell-permeable OPP rapidly labels nascent elongating polypeptides, which are subsequently conjugated to biotin-azide, using click chemistry, and captured with streptavidin beads, followed by digestion and analysis, using liquid chromatography-tandem mass spectrometry. Our technique of OPP-mediated identification (OPP-ID) allows detection of widespread proteomic changes within a short 2-hour pulse of OPP. We illustrate our technique by recapitulating alterations of proteomic networks induced by a potent mammalian target of rapamycin inhibitor, MLN128. In addition, by employing OPP-ID, we identify more than 2,100 proteins and uncover distinct protein networks underlying early erythroid progenitor and differentiation states not amenable to alternative approaches such as amino acid analog labeling. We present OPP-ID as a method to quantitatively identify nascent proteomes across an array of biological contexts while preserving the subtleties directing signaling in the native cellular environment
Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin.
Gene silencing by heterochromatin is proposed to occur in part as a result of the ability of heterochromatin protein 1 (HP1) proteins to spread across large regions of the genome, compact the underlying chromatin and recruit diverse ligands. Here we identify a new property of the human HP1α protein: the ability to form phase-separated droplets. While unmodified HP1α is soluble, either phosphorylation of its N-terminal extension or DNA binding promotes the formation of phase-separated droplets. Phosphorylation-driven phase separation can be promoted or reversed by specific HP1α ligands. Known components of heterochromatin such as nucleosomes and DNA preferentially partition into the HP1α droplets, but molecules such as the transcription factor TFIIB show no preference. Using a single-molecule DNA curtain assay, we find that both unmodified and phosphorylated HP1α induce rapid compaction of DNA strands into puncta, although with different characteristics. We show by direct protein delivery into mammalian cells that an HP1α mutant incapable of phase separation in vitro forms smaller and fewer nuclear puncta than phosphorylated HP1α. These findings suggest that heterochromatin-mediated gene silencing may occur in part through sequestration of compacted chromatin in phase-separated HP1 droplets, which are dissolved or formed by specific ligands on the basis of nuclear context
Nucleosomes in serum as a marker for cell death
The concentration of nucleosomes is elevated in blood of patients with diseases which are associated with enhanced cell death. In order to detect these circulating nucleosomes, we used the Cell Death Detection-ELISA(Plus) (CDDE) from Roche Diagnostics (Mannheim, Germany) (details at http:\textbackslash{}\textbackslash{}biochem.roche.com). For its application in liquid materials we performed various modifications: we introduced a standard curve with nucleosome-rich material, which enabled direct quantification and improved comparability of the values within (CVinterassay:3.0-4.1%) and between several runs (CVinterassay:8.6-13.5%), and tested the analytical specificity of the ELISA. Because of the fast elimination of nucleosomes from circulation and their limited stability, we compared plasma and serum matrix and investigated in detail the pre-analytical handling of serum samples which can considerably influence the test results. Careless venipuncture producing hemolysis, delayed centrifugation and bacterial contamination of the blood samples led to false-positive results; delayed stabilization with EDTA and insufficient storage conditions resulted in false-negative values. At temperatures of -20 degreesC, serum samples which were treated with 10 mM EDTA were stable for at least 6 months. In order to avoid possible interfering factors, we recommend a schedule for the pre-analytical handling of the samples. As the first stage, the possible clinical application was investigated in the sera of 310 persons. Patients with solid tumors (n = 220; mean = 361 Arbitrary Units (AU)) had considerably higher values than healthy persons (n = 50; mean = 30 AU; P = 0.0001) and patients with inflammatory diseases (n = 40; mean = 296 AU; p = 0.096). Within the group of patients with tumors, those in advanced stages (UICC 4) showed significantly higher values than those in early stages (UICC 1-3) (P = 0.0004)
The Transcriptionally Permissive Chromatin State of Embryonic Stem Cells Is Acutely Tuned to Translational Output
A permissive chromatin environment coupled to hypertranscription drives the rapid proliferation of embryonic stem cells (ESCs) and peri-implantation embryos. We carried out a genome-wide screen to systematically dissect the regulation of the euchromatic state of ESCs. The results revealed that cellular growth pathways, most prominently translation, perpetuate the euchromatic state and hypertranscription of ESCs. Acute inhibition of translation rapidly depletes euchromatic marks in mouse ESCs and blastocysts, concurrent with delocalization of RNA polymerase II and reduction in nascent transcription. Translation inhibition promotes rewiring of chromatin accessibility, which decreases at a subset of active developmental enhancers and increases at histone genes and transposable elements. Proteome-scale analyses revealed that several euchromatin regulators are unstable proteins and continuously depend on a high translational output. We propose that this mechanistic interdependence of euchromatin, transcription, and translation sets the pace of proliferation at peri-implantation and may be employed by other stem/progenitor cells
Recommended from our members
Electrospray mass spectrometry of NeuAc oligomers associated with the C fragment of the tetanus toxin
The Clostridial neurotoxins, botulinum and tetanus, gain entry into neuronal cells by protein recognition involving cell specific binding sites. The sialic or N-acetylneuraminic acid (NeuAc) residues of gangliosides attached to the surface of motor neurons are the suspected recognition and interaction points with Clostridial neurotoxins, although not necessarily the only ones. We have used electrospray ionization mass spectrometry (ESIMS) to examine formation of complexes between the tetanus toxin C fragment, or targeting domain, and carbohydrates containing NeuAc groups to determine how NeuAc residues contribute to ganglioside binding. ESI-MS was used to rapidly and efficiently measure dissociation constants for a number of related NeuAc-containing carbohydrates and NeuAc oligomers, information that has helped identify the structural features of gangliosides that determine their binding to tetanus toxin. The strength of the interactions between the C fragment and (NeuAc){sub n}, are consistent with the topography of the targeting domain of tetanus toxin and the nature of its carbohydrate binding sites. The results suggest that the targeting domain of tetanus toxin contains two binding sites that can accommodate NeuAc (or a dimer). This study also shows that NeuAc must play an important role in ganglioside binding and molecular recognition, a process critical for normal cell function and one frequently exploited by toxins, bacteria and viruses to facilitate their entrance into cells
The organic geochemistry of ancient sediments, part II
Chemical analysis of sediment and oil hydrocarbon content by gas chromatography and mass spectrometry to establish inception period of bio-organic evolutio
Outcomes for 18 to 25-year-olds with borderline personality disorder in a dedicated young adult only DBT programme compared to a general adult DBT programme for all ages 18
Aim
Targeting young adults with borderline personality disorder (BPD) for treatment may carry significant social and clinical benefits. We aimed to evaluate a communityâbased Dialectical Behaviour Therapy (DBT) programme delivered exclusively to young adults with BPD.
Methods
We describe a naturally occurring nonâequivalent, quasiâexperimental comparison of outcomes for young adults (18â25âyears) with BPD following 1 year of treatment in either a young adult only DBT programme or a general adult DBT programme (18+ years). Twentyâfour young adults enrolled in a communityâbased young adult DBT programme open only to 18â to 25âyearâolds with BPD. Another 13 young adults, also 18â25âyears, enrolled in a general adult DBT programme open to all ages above 18âyears. Both treatment conditions offered all modes of standard DBT for 1 year. Participants completed a battery of selfâreport measures on mental health symptoms at baseline and again at treatment completion after 1 year. Discharge rates at 2 years postâtreatment completion were also recorded.
Results
Better outcomes were found on borderline symptom severity and general psychopathology among completers of young adult DBT, with a large effect size for treatment condition as well as greater clinically significant change. Discharge rates from mental health services 24âmonths later were also higher for completers of young adult DBT.
Conclusions
There may be advantages in delivering DBT to young adults in an ageâspecific programme, possibly due to group cohesion. Methodological limitations apply, such as small sample size and nonârandomization. Further controlled research is needed
- âŠ