554 research outputs found

    Doug Altman, medical statistician par excellence: What can radiologists learn from his legacy?

    Get PDF
    This narrative review describes our experience of working with Doug Altman, the most highly cited medical statistician in the world. Doug was particularly interested in diagnostics, and imaging studies in particular. We describe how his insights helped improve our own radiological research studies and we provide advice for other researchers hoping to improve their own research practice

    Performance and evaluation in computed tomographic colonography screening: protocol for a cluster randomised trial

    Get PDF
    Background: Colorectal cancer (CRC) is a common, important healthcare priority and improving patient outcome relies on early diagnosis. Colonoscopy and computed tomographic colonography (CTC) are commonly-used diagnostic tests. Although colonoscopists are highly regulated and must be accredited, no analogous process exists for CTC. There are currently no universally accepted radiologist performance indicators for CTC, and lack of regulatory oversight may lead to variability in quality and lower neoplasia detection rates. This study aims to determine whether a structured educational training and feedback programme can improve radiologist interpretation accuracy. / Methods: NHS England CTC reporting radiologists will be cluster randomised to either an intervention (one-day individualised training and assessment with feedback) or control (assessment with no training or feedback) arm. Each cluster represents radiologists reporting CTC in a single NHS site. Both the intervention and control arm will undertake four CTC assessments at baseline, 1-month (after training; intervention arm or enrolment; control arm), 6- and 12 months to assess their detection of colorectal cancer (CRC) and 6mm+ polyps. The primary outcome will be difference in sensitivity at the 1-month test between arms. Secondary outcomes will include sensitivity at 6 and 12 months and radiologist characteristics associated with improved performance. Multilevel logistic regression will be used to analyse per-polyp and per-case sensitivity. Local ethical and Health Research Authority approval have been obtained. / Discussion: Lack of infrastructure to ensure that CTC radiologists can report adequately and lack of consensus regarding appropriate quality metrics may lead to variability in performance. Our provision of a structured education programme with feedback will evaluate the impact of individualised training and identify the factors related to improved radiologist performance in CTC reporting. An improvement in performance could lead to increased neoplasia detection and better patient outcome. / Registration: Clinical Trials (ClinicalTrials.gov Identifier: NCT02892721); available from: https://clinicaltrials.gov/ct2/show/NCT02892721. NIHR Clinical Research Network (CPMS ID 32293)

    Evolution of trace gases and particles emitted by a chaparral fire in California

    Get PDF
    Biomass burning (BB) is a major global source of trace gases and particles. Accurately representing the production and evolution of these emissions is an important goal for atmospheric chemical transport models. We measured a suite of gases and aerosols emitted from an 81 hectare prescribed fire in chaparral fuels on the central coast of California, US on 17 November 2009. We also measured physical and chemical changes that occurred in the isolated downwind plume in the first ~4 h after emission. The measurements were carried out onboard a Twin Otter aircraft outfitted with an airborne Fourier transform infrared spectrometer (AFTIR), aerosol mass spectrometer (AMS), single particle soot photometer (SP2), nephelometer, LiCor CO_2 analyzer, a chemiluminescence ozone instrument, and a wing-mounted meteorological probe. Our measurements included: CO_2; CO; NO_x; NH_3; non-methane organic compounds; organic aerosol (OA); inorganic aerosol (nitrate, ammonium, sulfate, and chloride); aerosol light scattering; refractory black carbon (rBC); and ambient temperature, relative humidity, barometric pressure, and three-dimensional wind velocity. The molar ratio of excess O_3 to excess CO in the plume (ΔO_3/ΔCO) increased from −5.13 (±1.13) × 10^(−3) to 10.2 (±2.16) × 10^(−2) in ~4.5 h following smoke emission. Excess acetic and formic acid (normalized to excess CO) increased by factors of 1.73 ± 0.43 and 7.34 ± 3.03 (respectively) over the same time since emission. Based on the rapid decay of C_2H_4 we infer an in-plume average OH concentration of 5.27 (±0.97) × 10^6 molec cm^(−3), consistent with previous studies showing elevated OH concentrations in biomass burning plumes. Ammonium, nitrate, and sulfate all increased over the course of 4 h. The observed ammonium increase was a factor of 3.90 ± 2.93 in about 4 h, but accounted for just ~36% of the gaseous ammonia lost on a molar basis. Some of the gas phase NH_3 loss may have been due to condensation on, or formation of, particles below the AMS detection range. NO_x was converted to PAN and particle nitrate with PAN production being about two times greater than production of observable nitrate in the first ~4 h following emission. The excess aerosol light scattering in the plume (normalized to excess CO_2) increased by a factor of 2.50 ± 0.74 over 4 h. The increase in light scattering was similar to that observed in an earlier study of a biomass burning plume in Mexico where significant secondary formation of OA closely tracked the increase in scattering. In the California plume, however, ΔOA/ΔCO_2 decreased sharply for the first hour and then increased slowly with a net decrease of ~20% over 4 h. The fraction of thickly coated rBC particles increased up to ~85% over the 4 h aging period. Decreasing OA accompanied by increased scattering/particle coating in initial aging may be due to a combination of particle coagulation and evaporation processes. Recondensation of species initially evaporated from the particles may have contributed to the subsequent slow rise in OA. We compare our results to observations from other plume aging studies and suggest that differences in environmental factors such as smoke concentration, oxidant concentration, actinic flux, and RH contribute significantly to the variation in plume evolution observations

    Appearances of screen-detected versus symptomatic colorectal cancers at CT colonography.

    Get PDF
    OBJECTIVES: The aim of this study was to compare the morphology, radiological stage, conspicuity, and computer-assisted detection (CAD) characteristics of colorectal cancers (CRC) detected by computed tomographic colonography (CTC) in screening and symptomatic populations. METHODS: Two radiologists independently analyzed CTC images from 133 patients diagnosed with CRC in (a) two randomized trials of symptomatic patients (35 patients with 36 tumours) and (b) a screening program using fecal occult blood testing (FOBt; 98 patients with 100 tumours), measuring tumour length, volume, morphology, radiological stage, and subjective conspicuity. A commercial CAD package was applied to both datasets. We compared CTC characteristics between screening and symptomatic populations with multivariable regression. RESULTS: Screen-detected CRC were significantly smaller (mean 3.0 vs 4.3 cm, p < 0.001), of lower volume (median 9.1 vs 23.2 cm(3), p < 0.001) and more frequently polypoid (34/100, 34 % vs. 5/36, 13.9 %, p = 0.02) than symptomatic CRC. They were of earlier stage than symptomatic tumours (OR = 0.17, 95 %CI 0.07-0.41, p < 0.001), and were judged as significantly less conspicuous (mean conspicuity 54.1/100 vs. 72.8/100, p < 0.001). CAD detection was significantly lower for screen-detected (77.4 %; 95 %CI 67.9-84.7 %) than symptomatic CRC (96.9 %; 95 %CI 83.8-99.4 %, p = 0.02). CONCLUSIONS: Screen-detected CRC are significantly smaller, more frequently polypoid, subjectively less conspicuous, and less likely to be identified by CAD than those in symptomatic patients. KEY POINTS: • Screen-detected colorectal cancers (CRC) are significantly smaller than symptomatic CRC. • Screening cases are significantly less conspicuous to radiologists than symptomatic tumours. • Screen-detected CRC have different morphology compared to symptomatic tumours (more polypoid, fewer annular). • A commercial computer-aided detection (CAD) system was significantly less likely to note screen-detected CRC

    Computed tomographic colonography: how many and how fast should radiologists report?

    Get PDF
    OBJECTIVES: To determine if polyp detection at computed tomographic colonography (CTC) is associated with (a) the number of CTC examinations interpreted per day and (b) the length of time spent scrutinising the scan. METHODS: Retrospective observational study from two hospitals. We extracted Radiology Information System data for CTC examinations from Jan 2012 to Dec 2015. For each examination, we determined how many prior CTCs had been interpreted by the reporting radiologist on that day and how long radiologists spent on interpretation. For each radiologist, we calculated their referral rate (proportion deemed positive for 6 mm+ polyp/cancer), positive predictive value (PPV) and endoscopic/surgically proven polyp detection rate (PDR). We also calculated the mean time each radiologist spent interpreting normal studies ("negative interpretation time"). We used multilevel logistic regression to investigate the relationship between the number of scans reported each day, negative interpretation time and referral rate, PPV and PDR. RESULTS: Five thousand one hundred ninety-one scans were interpreted by seven radiologists; 892 (17.2%) were reported as positive, and 534 (10.3%) had polyps confirmed. Both referral rate and PDR reduced as more CTCs were reported on a given day (p  20 min per case) or for too long (> 4 cases consecutively without a break). • Professional bodies should consider introducing a target minimum interpretation time for CT colonography examinations as a quality marker

    The Prostate Health Index adds predictive value to multi-parametric MRI in detecting significant prostate cancers in a repeat biopsy population

    Get PDF
    Both multi-parametric MRI (mpMRI) and the Prostate Health Index (PHI) have shown promise in predicting a positive biopsy in men with suspected prostate cancer. Here we investigated the value of combining both tests in men requiring a repeat biopsy. PHI scores were measured in men undergoing re-biopsy with an mpMRI image-guided transperineal approach (n = 279, 94 with negative mpMRIs). The PHI was assessed for ability to add value to mpMRI in predicting all or only significant cancers (Gleason ≥7). In this study adding PHI to mpMRI improved overall and significant cancer prediction (AUC 0.71 and 0.75) compared to mpMRI + PSA alone (AUC 0.64 and 0.69 respectively). At a threshold of ≥35, PHI + mpMRI demonstrated a NPV of 0.97 for excluding significant tumours. In mpMRI negative men, the PHI again improved prediction of significant cancers; AUC 0.76 vs 0.63 (mpMRI + PSA). Using a PHI≥35, only 1/21 significant cancers was missed and 31/73 (42%) men potentially spared a re-biopsy (NPV of 0.97, sensitivity 0.95). Decision curve analysis demonstrated clinically relevant utility of the PHI across threshold probabilities of 5-30%. In summary, the PHI adds predictive performance to image-guided detection of clinically significant cancers and has particular value in determining re-biopsy need in men with a negative mpMRI

    Trace Gas and Particle Emissions from Open Biomass Burning in Mexico

    Get PDF
    We report airborne measurements of emission factors (EF) for trace gases and PM(2.5) made in southern Mexico in March of 2006 on 6 crop residue fires, 3 tropical dry forest fires, 8 savanna fires, 1 garbage fire, and 7 mountain pine-oak forest fires. The savanna fire EF were measured early in the local dry season and when compared to EF measured late in the African dry season they were at least 1.7 times larger for NO(x), NH(3), H(2), and most non-methane organic compounds. Our measurements suggest that urban deposition and high windspeed may also be associated with significantly elevated NOx EF. When considering all fires sampled, the percentage of particles containing soot increased from 15 to 60% as the modified combustion efficiency increased from 0.88 to 0.98. We estimate that about 175 Tg of fuel was consumed by open burning of biomass and garbage and as biofuel (mainly wood cooking fires) in Mexico in 2006. Combining the fuel consumption estimates with our EF measurements suggests that the above combustion sources account for a large fraction of the reactive trace gases and more than 90% of the total primary, fine carbonaceous particles emitted by all combustion sources in Mexico

    Airborne and Ground-Based Measurements of the Trace Gases and Particles Emitted by Prescribed Fires in the United States

    Get PDF
    We have measured emission factors for 19 trace gas species and particulate matter (PM2.5) from 14 prescribed fires in chaparral and oak savanna in the southwestern US, as well as conifer forest understory in the southeastern US and Sierra Nevada mountains of California. These are likely the most extensive emission factor field measurements for temperate biomass burning to date and the only published emission factors for temperate oak savanna fuels. This study helps to close the gap in emissions data available for temperate zone fires relative to tropical biomass burning. We present the first field measurements of the biomass burning emissions of glycolaldehyde, a possible precursor for aqueous phase secondary organic aerosol formation. We also measured the emissions of phenol, another aqueous phase secondary organic aerosol precursor. Our data confirm previous observations that urban deposition can impact the NOx emission factors and thus subsequent plume chemistry. For two fires, we measured both the emissions in the convective smoke plume from our airborne platform and the unlofted residual smoldering combustion emissions with our ground-based platform. The smoke from residual smoldering combustion was characterized by emission factors for hydrocarbon and oxygenated organic species that were up to ten times higher than in the lofted plume, including high 1,3-butadiene and isoprene concentrations which were not observed in the lofted plume. This should be considered in modeling the air quality impacts for smoke that disperses at ground level. We also show that the often ignored unlofted emissions can significantly impact estimates of total emissions. Preliminary evidence suggests large emissions of monoterpenes in the residual smoldering smoke. These data should lead to an improved capacity to model the impacts of biomass burning in similar temperate ecosystems

    Laboratory Characterization of PM Emissions from Combustion of Wildland Biomass Fuels

    Get PDF
    [1] Particle emissions from open burning of southwestern (SW) and southeastern (SE) U.S. fuel types during 77 controlled laboratory burns are presented. The fuels include SW vegetation types: ceanothus, chamise/scrub oak, coastal sage scrub, California sagebrush, manzanita, maritime chaparral, masticated mesquite, oak savanna, and oak woodland, as well as SE vegetation types: 1 year, 2 year rough, pocosin, chipped understory, understory hardwood, and pine litter. The SW fuels burned at higher modified combustion efficiency (MCE) than the SE fuels resulting in lower particulate matter mass emission factor. Particle mass distributions for six fuels and particle number emission for all fuels are reported. Excellent mass closure (slope = 1.00, r2 = 0.94) between ions, metals, and carbon with total weight was obtained. Organic carbon emission factors inversely correlated (R2 = 0.72) with average MCE, while elemental carbon (EC) had little correlation with average MCE (R2 = 0.10). The EC/total carbon ratio sharply increased with MCE for MCEs exceeding 0.94. The average levoglucosan and total polycyclic aromatic hydrocarbon (PAH) emissions factors ranged from 25 to 1272 mg/kg fuel and 1.8 to 11.3 mg/kg fuel, respectively. No correlation between average MCE and emissions of PAHs/levoglucosan was found. Additionally, PAH diagnostic ratios were observed to be poor indicators of biomass burning. Large fuel type and regional dependency were observed in the emission rates of ammonium, nitrate, chloride, sodium, and potassium
    corecore