16 research outputs found

    Neutrinoless double-beta decay with three or four neutrino mixing

    Full text link
    Considering the scheme with mixing of three neutrinos and a mass hierarchy that can accommodate the results of solar and atmospheric neutrino experiments, it is shown that the results of solar neutrino experiments imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay, under the natural assumptions that massive neutrinos are Majorana particles and there are no unlikely fine-tuned cancellations among the contributions of the different neutrino masses. Considering the four-neutrino schemes that can accommodate also the results of the LSND experiment, it is shown that only one of them is compatible with the results of neutrinoless double-beta decay experiments and with the measurement of the abundances of primordial elements produced in Big-Bang Nucleosynthesis. It is shown that in this scheme, under the assumptions that massive neutrinos are Majorana particles and there are no cancellations among the contributions of the different neutrino masses, the results of the LSND experiment imply a lower bound for the effective Majorana mass in neutrinoless double-beta decay.Comment: 18 pages including 2 figures, RevTe

    Revisiting Cardassian Model and Cosmic Constraint

    Full text link
    In this paper, we revisit the Cardassian model in which the radiation energy component is included. It is important for early epoch when the radiation cannot be neglected because the equation of state (EoS) of the effective dark energy becomes time variable. Therefore, it is not equivalent to the quintessence model with a constant EoS anymore. This situation was almost overlooked in the literature. By using the recent released Union2 557 of type Ia supernovae (SN Ia), the baryon acoustic oscillation (BAO) from Sloan Digital Sky Survey and the WiggleZ data points, the full information of cosmic microwave background (CMB) measurement given by the seven-year Wilkinson Microwave Anisotropy Probe observation, we constrain the Cardassian model via the Markov Chain Monte Carlo (MCMC) method. A tight constraint is obtained: n=0.04790.07320.148+0.0730+0.142n= -0.0479_{- 0.0732- 0.148}^{+ 0.0730+ 0.142} in 1,2σ1,2\sigma regions. The deviation of Cardassian model from quintessence model is shown in CMB anisotropic power spectra at high l's parts due to the evolution of EoS. But it is about the order of 0.1% which cannot be discriminated by current data sets. The Cardassian model is consistent with current cosmic observational data sets.Comment: 6 pages, 5 figures, match the published versio

    Cosmology at the Millennium

    Get PDF
    One hundred years ago we did not know how stars generate energy, the age of the Universe was thought to be only millions of years, and our Milky Way galaxy was the only galaxy known. Today, we know that we live in an evolving and expanding Universe comprising billions of galaxies, all held together by dark matter. With the hot big-bang model, we can trace the evolution of the Universe from the hot soup of quarks and leptons that existed a fraction of a second after the beginning to the formation of galaxies a few billion years later, and finally to the Universe we see today 13 billion years after the big bang, with its clusters of galaxies, superclusters, voids, and great walls. The attractive force of gravity acting on tiny primeval inhomogeneities in the distribution of matter gave rise to all the structure seen today. A paradigm based upon deep connections between cosmology and elementary particle physics -- inflation + cold dark matter -- holds the promise of extending our understanding to an even more fundamental level and much earlier times, as well as shedding light on the unification of the forces and particles of nature. As we enter the 21st century, a flood of observations is testing this paradigm.Comment: 44 pages LaTeX with 14 eps figures. To be published in the Centennial Volume of Reviews of Modern Physic

    Revisiting Generalized Chaplygin Gas as a Unified Dark Matter and Dark Energy Model

    Full text link
    In this paper, we revisit generalized Chaplygin gas (GCG) model as a unified dark matter and dark energy model. The energy density of GCG model is given as ρGCG/ρGCG0=[Bs+(1Bs)a3(1+α)]1/(1+α)\rho_{GCG}/\rho_{GCG0}=[B_{s}+(1-B_{s})a^{-3(1+\alpha)}]^{1/(1+\alpha)}, where α\alpha and BsB_s are two model parameters which will be constrained by type Ia supernova as standard candles, baryon acoustic oscillation as standard rulers and the seventh year full WMAP data points. In this paper, we will not separate GCG into dark matter and dark energy parts any more as adopted in the literatures. By using Markov Chain Monte Carlo method, we find the result: α=0.001260.001260.00126+0.000970+0.00268\alpha=0.00126_{- 0.00126- 0.00126}^{+ 0.000970+ 0.00268} and Bs=0.7750.01610.0338+0.0161+0.0307B_s= 0.775_{- 0.0161- 0.0338}^{+ 0.0161+ 0.0307}.Comment: 6 pages, 4 figure

    Observational Constraints on Chaplygin Quartessence: Background Results

    Full text link
    We derive the constraints set by several experiments on the quartessence Chaplygin model (QCM). In this scenario, a single fluid component drives the Universe from a nonrelativistic matter-dominated phase to an accelerated expansion phase behaving, first, like dark matter and in a more recent epoch like dark energy. We consider current data from SNIa experiments, statistics of gravitational lensing, FR IIb radio galaxies, and x-ray gas mass fraction in galaxy clusters. We investigate the constraints from this data set on flat Chaplygin quartessence cosmologies. The observables considered here are dependent essentially on the background geometry, and not on the specific form of the QCM fluctuations. We obtain the confidence region on the two parameters of the model from a combined analysis of all the above tests. We find that the best-fit occurs close to the Λ\LambdaCDM limit (α=0\alpha=0). The standard Chaplygin quartessence (α=1\alpha=1) is also allowed by the data, but only at the 2σ\sim2\sigma level.Comment: Replaced to match the published version, references update

    Cosmological parameters from SDSS and WMAP

    Full text link
    We measure cosmological parameters using the three-dimensional power spectrum P(k) from over 200,000 galaxies in the Sloan Digital Sky Survey (SDSS) in combination with WMAP and other data. Our results are consistent with a ``vanilla'' flat adiabatic Lambda-CDM model without tilt (n=1), running tilt, tensor modes or massive neutrinos. Adding SDSS information more than halves the WMAP-only error bars on some parameters, tightening 1 sigma constraints on the Hubble parameter from h~0.74+0.18-0.07 to h~0.70+0.04-0.03, on the matter density from Omega_m~0.25+/-0.10 to Omega_m~0.30+/-0.04 (1 sigma) and on neutrino masses from <11 eV to <0.6 eV (95%). SDSS helps even more when dropping prior assumptions about curvature, neutrinos, tensor modes and the equation of state. Our results are in substantial agreement with the joint analysis of WMAP and the 2dF Galaxy Redshift Survey, which is an impressive consistency check with independent redshift survey data and analysis techniques. In this paper, we place particular emphasis on clarifying the physical origin of the constraints, i.e., what we do and do not know when using different data sets and prior assumptions. For instance, dropping the assumption that space is perfectly flat, the WMAP-only constraint on the measured age of the Universe tightens from t0~16.3+2.3-1.8 Gyr to t0~14.1+1.0-0.9 Gyr by adding SDSS and SN Ia data. Including tensors, running tilt, neutrino mass and equation of state in the list of free parameters, many constraints are still quite weak, but future cosmological measurements from SDSS and other sources should allow these to be substantially tightened.Comment: Minor revisions to match accepted PRD version. SDSS data and ppt figures available at http://www.hep.upenn.edu/~max/sdsspars.htm

    Cosmological parameters from CMB and other data: a Monte-Carlo approach

    Full text link
    We present a fast Markov Chain Monte-Carlo exploration of cosmological parameter space. We perform a joint analysis of results from recent CMB experiments and provide parameter constraints, including sigma_8, from the CMB independent of other data. We next combine data from the CMB, HST Key Project, 2dF galaxy redshift survey, supernovae Ia and big-bang nucleosynthesis. The Monte Carlo method allows the rapid investigation of a large number of parameters, and we present results from 6 and 9 parameter analyses of flat models, and an 11 parameter analysis of non-flat models. Our results include constraints on the neutrino mass (m_nu < 0.3eV), equation of state of the dark energy, and the tensor amplitude, as well as demonstrating the effect of additional parameters on the base parameter constraints. In a series of appendices we describe the many uses of importance sampling, including computing results from new data and accuracy correction of results generated from an approximate method. We also discuss the different ways of converting parameter samples to parameter constraints, the effect of the prior, assess the goodness of fit and consistency, and describe the use of analytic marginalization over normalization parameters.Comment: Quintessence results now include perturbations. Changes to match version accepted by PRD. MCMC code and data are available at http://cosmologist.info/cosmomc/ along with a B&W printer-friendly version of the pape

    Modified Chaplygin Gas as a Unified Dark Matter and Dark Energy Model and Cosmic Constraints

    Full text link
    A modified Chaplygin gas model (MCG), ρMCG/ρMCG0=[Bs+(1Bs)a3(1+B)(1+α)]1/(1+α)\rho_{MCG}/\rho_{MCG0}=[B_{s}+(1-B_{s})a^{-3(1+B)(1+\alpha)}]^{1/(1+\alpha)}, as a unified dark matter model and dark energy model is constrained by using current available cosmic observational data points which include type Ia supernovae, baryon acoustic oscillation and the seventh year full WMAP data points. As a contrast to the consideration in the literatures, we {\it do not} separate the MCG into two components, i.e. dark mater and dark energy component, but we take it as a whole energy component-a unified dark sector. By using Markov Chain Monte Carlo method, a tight constraint is obtained: α=0.0007270.001400.00234+0.00142+0.00391\alpha= 0.000727_{- 0.00140- 0.00234}^{+ 0.00142+ 0.00391}, B=0.0007770.0003020.000697+0.000201+0.000915B=0.000777_{- 0.000302- 0.000697}^{+ 0.000201+ 0.000915} and Bs=0.7820.01620.0329+0.0163+0.0307B_s= 0.782_{- 0.0162- 0.0329}^{+ 0.0163+ 0.0307} .}Comment: 6 pages, 3 figure

    Testing dark energy beyond the cosmological constant barrier

    Full text link
    Although well motivated from theoretical arguments, the cosmological constant \emph{barrier}, i.e., the imposition that the equation-of-state parameter of dark energy (ωxpx/ρx\omega_x \equiv p_x/\rho_x) is 1\geq -1, seems to introduce bias in the parameter determination from statistical analyses of observational data. In this regard, \emph{phantom} dark energy or \emph{superquintessence} has been proposed in which the usual imposition ω1\omega \geq -1 is relaxed. Here, we study possible observational limits to the \emph{phantom} behavior of the dark energy from recent distance estimates of galaxy clusters obtained from interferometric measurements of the Sunyaev-Zel'dovich effect/X-ray observations, Type Ia supernova data and CMB measurements. We find that there is much \emph{observationally} acceptable parameter space beyond the Λ\Lambda \emph{barrier}, thus opening the possibility of existence of more exotic forms of energy in the Universe.Comment: 5 pages, 5 figures, to appear in Phys. Rev.

    Baryons: What, When and Where?

    Full text link
    We review the current state of empirical knowledge of the total budget of baryonic matter in the Universe as observed since the epoch of reionization. Our summary examines on three milestone redshifts since the reionization of H in the IGM, z = 3, 1, and 0, with emphasis on the endpoints. We review the observational techniques used to discover and characterize the phases of baryons. In the spirit of the meeting, the level is aimed at a diverse and non-expert audience and additional attention is given to describe how space missions expected to launch within the next decade will impact this scientific field.Comment: Proceedings Review for "Astrophysics in the Next Decade: JWST and Concurrent Facilities", ed. X. Tielens, 38 pages, 10 color figures. Revised to address comments from the communit
    corecore