10 research outputs found

    The effects of emotional states and traits on time perception

    Get PDF
    Background: Models of time perception share an element of scalar expectancy theory known as the internal clock, containing specific mechanisms by which the brain is able to experience time passing and function effectively. A debate exists about whether to treat factors that influence these internal clock mechanisms (e.g., emotion, personal- ity, executive functions, and related neurophysiological components) as arousal- or attentional-based factors. Purpose: This study investigated behavioral and neurophysiological responses to an affective time perception Go/ NoGo task, taking into account the behavioral inhibition (BIS) and behavioral activation systems (BASs), which are components of reinforcement sensitivity theory. Methods: After completion of self-report inventories assessing personality traits, electroencephalogram (EEG/ERP) and behavioral recordings of 32 women and 13 men recruited from introductory psychology classes were completed during an affective time perception Go/NoGo task. This task required participants to respond (Go) and inhibit (NoGo) to positive and negative affective visual stimuli of various durations in comparison to a standard duration. Results: Higher BAS scores (especially BAS Drive) were associated with overestimation bias scores for positive stimuli, while BIS scores were not correlated with overestimation bias scores. Furthermore, higher BIS Total scores were associ- ated with higher N2d amplitudes during positive stimulus presentation for 280 ms, while higher BAS Total scores were associated with higher N2d amplitudes during negative stimuli presentation for 910 ms. Discussion: Findings are discussed in terms of arousal-based models of time perception, and suggestions for future research are considered

    Context specificity of post-error and post-conflict cognitive control adjustments

    Get PDF
    There has been accumulating evidence that cognitive control can be adaptively regulated by monitoring for processing conflict as an index of online control demands. However, it is not yet known whether top-down control mechanisms respond to processing conflict in a manner specific to the operative task context or confer a more generalized benefit. While previous studies have examined the taskset-specificity of conflict adaptation effects, yielding inconsistent results, controlrelated performance adjustments following errors have been largely overlooked. This gap in the literature underscores recent debate as to whether post-error performance represents a strategic, control-mediated mechanism or a nonstrategic consequence of attentional orienting. In the present study, evidence of generalized control following both high conflict correct trials and errors was explored in a task-switching paradigm. Conflict adaptation effects were not found to generalize across tasksets, despite a shared response set. In contrast, post-error slowing effects were found to extend to the inactive taskset and were predictive of enhanced post-error accuracy. In addition, post-error performance adjustments were found to persist for several trials and across multiple task switches, a finding inconsistent with attentional orienting accounts of post-error slowing. These findings indicate that error-related control adjustments confer a generalized performance benefit and suggest dissociable mechanisms of post-conflict and post-error control. © 2014 Forster, Cho

    A Gap Analysis Methodology for Collecting Crop Genepools: A Case Study with Phaseolus Beans

    Get PDF
    Background The wild relatives of crops represent a major source of valuable traits for crop improvement. These resources are threatened by habitat destruction, land use changes, and other factors, requiring their urgent collection and long-term availability for research and breeding from ex situ collections. We propose a method to identify gaps in ex situ collections (i.e. gap analysis) of crop wild relatives as a means to guide efficient and effective collecting activities. Methodology/Principal Findings The methodology prioritizes among taxa based on a combination of sampling, geographic, and environmental gaps. We apply the gap analysis methodology to wild taxa of the Phaseolus genepool. Of 85 taxa, 48 (56.5%) are assigned high priority for collecting due to lack of, or under-representation, in genebanks, 17 taxa are given medium priority for collecting, 15 low priority, and 5 species are assessed as adequately represented in ex situ collections. Gap “hotspots”, representing priority target areas for collecting, are concentrated in central Mexico, although the narrow endemic nature of a suite of priority species adds a number of specific additional regions to spatial collecting priorities. Conclusions/Significance Results of the gap analysis method mostly align very well with expert opinion of gaps in ex situ collections, with only a few exceptions. A more detailed prioritization of taxa and geographic areas for collection can be achieved by including in the analysis predictive threat factors, such as climate change or habitat destruction, or by adding additional prioritization filters, such as the degree of relatedness to cultivated species (i.e. ease of use in crop breeding). Furthermore, results for multiple crop genepools may be overlaid, which would allow a global analysis of gaps in ex situ collections of the world's plant genetic resource

    A922 Sequential measurement of 1 hour creatinine clearance (1-CRCL) in critically ill patients at risk of acute kidney injury (AKI)

    Get PDF
    Meeting abstrac

    Monoaminergic modulation of behavioural and electrophysiological indices of error processing

    Full text link
    Error processing is a critical executive function that is impaired in a large number of clinical populations. Although the neural underpinnings of this function have been investigated for decades and critical error-related components in the human electroencephalogram (EEG), such as the error-related negativity (ERN) and the error positivity (Pe), have been characterised, our understanding of the relative contributions of key neurotransmitters to the generation of these components remains limited

    Probing Interval Timing with Scalp-Recorded Electroencephalography (EEG)

    Full text link
    corecore