8 research outputs found

    ON CONTROL EFFECTIVENESS OF ELECTRIC PROCESSES UNDER CUTTING

    No full text
    The effect of thermoelectric heat under cutting is considered. In the narrow feed range under the preselected cu tting speed, no - equalizing current area in the inner electrical circuit is define

    FRICTIONAL ELECTRICITY AND TOOL MATERIALS WEAR

    No full text
    Thomson spatial heat sources power is determined. It is shown that the heating spatial source helps reduce the total flow quantity entering the plate, and expand heat penetration. The volume cooling source in the tool material plate, conversely, removes an additional quantity of heat from the contact zone increasing the temperature gradient and reducing the heating zone

    Metal-containing nanomaterials as lubricant additives: State-of-the-art and future development

    No full text
    Abstract This review focuses on the effect of metal-containing nanomaterials on tribological performance in oil lubrication. The basic data on nanolubricants based on nanoparticles of metals, metal oxides, metal sulfides, nanocomposities, and rare-earth compounds are generalized. The influence of nanoparticle size, morphology, surface functionalization, and concentration on friction and wear is analyzed. The lubrication mechanisms of nanolubricants are discussed. The problems and prospects for the development of metal-containing nanomaterials as lubricant additives are considered. The bibliography includes articles published during the last five years

    Tribology properties of hybrid graphene oxide materials as lubricant additives

    No full text
    Graphene oxide was synthesized by the modified Hammers method. With managed hydrolysis in isopropanol solution obtained hybrid material “graphene oxide - copper oxide nanoparticles”. The phase composition of the hybrid material was studied by X-ray phase analysis and UV-visible spectroscopy. By ultrasonic processing dispersions of synthesized materials in glycerol were produced. The concentration of lubricating additives in the lube oil was 0.05 wt. %. The tribological properties of dispersions were investigated using a pin-on-disc friction machine. Tests showed that in the presence of graphene oxide, the friction coefficient was ~0.02, while with the addition of a hybrid material, the coefficient of friction was ~0.035. This is due to various mechanisms of lubrication. Reduction of the coefficient of friction in the presence of graphene oxide is associated with the formation of tribocarbon on the porosity of frictional contacts. While the addition of a hybrid material containing the CuO nanoparticles leads to the formation of a third body

    Tribology properties of hybrid graphene oxide materials as lubricant additives

    No full text
    Graphene oxide was synthesized by the modified Hammers method. With managed hydrolysis in isopropanol solution obtained hybrid material “graphene oxide - copper oxide nanoparticles”. The phase composition of the hybrid material was studied by X-ray phase analysis and UV-visible spectroscopy. By ultrasonic processing dispersions of synthesized materials in glycerol were produced. The concentration of lubricating additives in the lube oil was 0.05 wt. %. The tribological properties of dispersions were investigated using a pin-on-disc friction machine. Tests showed that in the presence of graphene oxide, the friction coefficient was ~0.02, while with the addition of a hybrid material, the coefficient of friction was ~0.035. This is due to various mechanisms of lubrication. Reduction of the coefficient of friction in the presence of graphene oxide is associated with the formation of tribocarbon on the porosity of frictional contacts. While the addition of a hybrid material containing the CuO nanoparticles leads to the formation of a third body

    Preparation of FeCo/C-N and FeNi/C-N Nanocomposites from Acrylamide Co-Crystallizates and Their Use as Lubricant Additives

    No full text
    FeCo and FeNi nanoalloy particles encapsulated in a nitrogen-doped carbonized shell (FeCo/C-N and FeNi/C-N) were synthesized by thermolysis at 400 °C of polyacrylamide complexes after frontal polymerization of co-crystallizate of Fe and Co or Ni nitrates and acrylamide. During the thermolysis of polyacrylamide complexes in a self-generated atmosphere, Co(II) or Ni(II) and Fe(III) cations are reduced to form FeCo and FeNi nanoalloy particles, while polyacrylamide simultaneously forms a nitrogen-doped carbon shell layer. This unique architecture provides high chemical and thermal stability of the resulting nanocomposites. The average crystallite size of FeCo and FeNi nanoparticles is 10 and 12 nm, respectively. The nanocomposites were studied by X-ray diffraction, atomic force microscopy, scanning electron microscopy, and high-resolution transmission electron microscopy. The nanocomposites have been tested as antifriction and antiwear additives in lubricating oils. The optimal concentrations of nanoparticles were determined, at which the antifriction and antiwear properties of the lubricant manifest themselves in the best possible way
    corecore