37 research outputs found

    In-plane magnetic field phase diagram of superconducting Sr2RuO4

    Full text link
    We develop the Ginzburg - Landau theory of the upper critical field in the basal plane of a tetragonal multiband metal in two-component superconducting state. It is shown that typical for the two component superconducting state the upper critical field basal plane anisotropy and the phase transition splitting still exist in a multiband case. However, the value of anisotropy can be effectively smaller than in the single band case. The results are discussed in the application to the superconducting Sr2RuO4.Comment: 4 pages, no figure

    Fractional-flux vortices and spin superfluidity in triplet superconductors

    Full text link
    We discuss a novel type of fractional flux vortices along with integer flux vortices in Kosterlitz-Thouless transitions in a triplet superconductor. We show that under certain conditions a spin-triplet superconductor should exhibit a novel state of {\it spin superfluidity} without superconductivity.Comment: Physical Review Lettes, in print. v2: references added, v3: discussion of several points extended according to referee request. Latest updates and links to related papers are available at my homepage http://people.ccmr.cornell.edu/~egor

    Metals in high magnetic field: a new universality class of Fermi liquids

    Full text link
    Parquet equations, describing the competition between superconducting and density-wave instabilities, are solved for a three-dimensional isotropic metal in a high magnetic field when only the lowest Landau level is filled. In the case of a repulsive interaction between electrons, a phase transition to the density-wave state is found at finite temperature. In the opposite case of attractive interaction, no phase transition is found. With decreasing temperature TT, the effective vertex of interaction between electrons renormalizes toward a one-dimensional limit in a self-similar way with the characteristic length (transverse to the magnetic field) decreasing as ln1/6(ωc/T)\ln^{-1/6}(\omega_c/T) (ωc\omega_c is a cutoff). Correlation functions have new forms, previously unknown for conventional one-dimensional or three-dimensional Fermi-liquids.Comment: 13 pages + 4 figures (included

    Suppression of surface barrier in superconductors by columnar defects

    Full text link
    We investigate the influence of columnar defects in layered superconductors on the thermally activated penetration of pancake vortices through the surface barrier. Columnar defects, located near the surface, facilitate penetration of vortices through the surface barrier, by creating ``weak spots'', through which pancakes can penetrate into the superconductor. Penetration of a pancake mediated by an isolated column, located near the surface, is a two-stage process involving hopping from the surface to the column and the detachment from the column into the bulk; each stage is controlled by its own activation barrier. The resulting effective energy is equal to the maximum of those two barriers. For a given external field there exists an optimum location of the column for which the barriers for the both processes are equal and the reduction of the effective penetration barrier is maximal. At high fields the effective penetration field is approximately two times smaller than in unirradiated samples. We also estimate the suppression of the effective penetration field by column clusters. This mechanism provides further reduction of the penetration field at low temperatures.Comment: 8 pages, 9 figures, submitted to Phys. Rev.

    Vortex lattice structures of Sr2_2RuO4_4

    Full text link
    The vortex lattice structures of Sr2_2RuO4_4 for the odd parity representations of the superconducting state are examined for the magnetic field along the crystallographic directions. Particular emphasis is placed upon the two dimensional representation which is believed to be relevant to this material. It is shown that when the zero-field state breaks time reversal symmetry, there must exist two superconducting transitions when there is a finite field along a high symmetry direction in the basal plane. Also it is shown that a square vortex lattice is expected when the field is along the cc-axis. The orientation of the square lattice with respect to the underlying ionic lattice yields information as to which Ru 4d orbitals are relevant to the superconducting state.Comment: 5 pages, 2 figure

    Effects of Magnetic Order on the Upper Critical Field of UPt3_3

    Full text link
    I present a Ginzburg-Landau theory for hexagonal oscillations of the upper critical field of UPt3_3 near TcT_c. The model is based on a 2D2D representation for the superconducting order parameter, η=(η1,η2)\vec{\eta}=(\eta_1,\eta_2), coupled to an in-plane AFM order parameter, ms\vec{m}_s. Hexagonal anisotropy of Hc2H_{c2} arises from the weak in-plane anisotropy energy of the AFM state and the coupling of the superconducting order parameter to the staggered field. The model explains the important features of the observed hexagonal anisotropy [N. Keller, {\it et al.}, Phys. Rev. Lett. {\bf 73}, 2364 (1994).] including: (i) the small magnitude, (ii) persistence of the oscillations for TTcT\rightarrow T_c, and (iii) the change in sign of the oscillations for T>TT> T^{*} and T<TT< T^{*} (the temperature at the tetracritical point). I also show that there is a low-field crossover (observable only very near TcT_c) below which the oscillations should vanish.Comment: 9 pages in a RevTex (3.0) file plus 2 postscript figures (uuencoded). Submitted to Physical Review B (December 20, 1994)

    Phase Fluctuations and Vortex Lattice Melting in Triplet Quasi-One-Dimensional Superconductors at High Magnetic Fields

    Full text link
    Assuming that the order parameter corresponds to an equal spin triplet pairing symmetry state, we calculate the effect of phase fluctuations in quasi-one-dimensional superconductors at high magnetic fields applied along the y (b') axis. We show that phase fluctuations can destroy the theoretically predicted triplet reentrant superconducting state, and that they are responsible for melting the magnetic field induced Josephson vortex lattice above a magnetic field dependent melting temperature Tm.Comment: 4 pages (double column), 1 eps figur

    Possible Triplet Electron Pairing and an Anisotropic Spin Susceptibility in Organic Superconductors (TMTSF)_2 X

    Full text link
    We argue that (TMTSF)_2 PF_6 compound under pressure is likely a triplet superconductor with a vector order parameter d(k) \equiv (d_a(k) \neq 0, d_c(k) = ?, d_{b'}(k) = 0); |d_a(k)| > |d_c(k)|. It corresponds to an anisotropic spin susceptibility at T=0: \chi_{b'} = \chi_0, \chi_a \ll \chi_0, where \chi_0 is its value in a metallic phase. [The spin quantization axis, z, is parallel to a so-called b'-axis]. We show that the suggested order parameter explains why the upper critical field along the b'-axis exceeds all paramagnetic limiting fields, including that for a nonuniform superconducting state, whereas the upper critical field along the a-axis (a \perp b') is limited by the Pauli paramagnetic effects [I. J. Lee, M. J. Naughton, G. M. Danner and P. M. Chaikin, Phys. Rev. Lett. 78, 3555 (1997)]. The triplet order parameter is in agreement with the recent Knight shift measurements by I. J. Lee et al. as well as with the early results on a destruction of superconductivity by nonmagnetic impurities and on the absence of the Hebel-Slichter peak in the NMR relaxation rate.Comment: 4 pages, 1 eps figur

    Magnetic skyrmion lattices in heavy fermion superconductor UPt3

    Full text link
    Topological analysis of nearly SO(3)_{spin} symmetric Ginzburg--Landau theory, proposed for UPt3_{3} by Machida et al, shows that there exists a new class of solutions carrying two units of magnetic flux: the magnetic skyrmion. These solutions do not have singular core like Abrikosov vortices and at low magnetic fields they become lighter for strongly type II superconductors. Magnetic skyrmions repel each other as 1/r1/r at distances much larger then the magnetic penetration depth λ\lambda, forming a relatively robust triangular lattice. The magnetic induction near Hc1H_{c1} is found to increase as (HHc1)2(H-H_{c1})^{2}. This behavior agrees well with experiments.Comment: 4 pages, 2 figures, 2 column format; v2:misprint in the title is correcte

    Magnetic skyrmions and their lattices in triplet superconductors

    Full text link
    Complete topological classification of solutions in SO(3) symmetric Ginzburg-Landau free energy has been performed and a new class of solutions in weak external magnetic field carrying two units of magnetic flux has been identified. These solutions, magnetic skyrmions, do not have singular core like Abrikosov vortices and at low magnetic field become lighter for strongly type II superconductors. As a consequence, the lower critical magnetic field Hc1 is reduced by a factor of log(kappa). Magnetic skyrmions repel each other as 1/r at distances much larger then magnetic penetration depth forming relatively robust triangular lattice. Magnetic induction near Hc1 increases gradually as (H-Hc1)^2. This agrees very well with experiments on heavy fermion superconductor UPt3. Newly discovered Ru based compounds Sr2RuO4 and Sr2YRu(1-x)Cu(x)O6 are other possible candidates to possess skyrmion lattices. Deviations from exact SO(3) symmetry are also studied.Comment: 23 pages, 10 eps figure
    corecore