10 research outputs found

    SVEP1 is an endogenous ligand for the orphan receptor PEAR1

    Get PDF
    Sushi, von Willebrand factor type A, EGF and pentraxin domain containing 1 (SVEP1) is an extracellular matrix protein that causally promotes vascular disease and associates with platelet reactivity in humans. Here, using a human genomic and proteomic approach, we identify a high affinity, disease-relevant, and potentially targetable interaction between SVEP1 and the orphan receptor Platelet and Endothelial Aggregation Receptor 1 (PEAR1). This interaction promotes PEAR1 phosphorylation and disease associated AKT/mTOR signaling in vascular cells and platelets. Mice lacking SVEP1 have reduced platelet activation, and exogenous SVEP1 induces PEAR1-dependent activation of platelets. SVEP1 and PEAR1 causally and concordantly relate to platelet phenotypes and cardiovascular disease in humans, as determined by Mendelian Randomization. Targeting this receptor-ligand interaction may be a viable therapeutic strategy to treat or prevent cardiovascular and thrombotic disease

    ANGPTL3 deficiency impairs lipoprotein production and produces adaptive changes in hepatic lipid metabolism

    No full text
    Angiopoietin-like protein 3 (ANGPTL3) is a hepatically secreted protein and therapeutic target for reducing plasma triglyceride-rich lipoproteins and low-density lipoprotein (LDL) cholesterol. Although ANGPTL3 modulates the metabolism of circulating lipoproteins, its role in triglyceride-rich lipoprotein assembly and secretion remains unknown. CRISPR-associated protein 9 (CRISPR/Cas9) was used to target ANGPTL3 in HepG2 cells (ANGPTL3−/−) whereupon we observed ∼50% reduction of apolipoprotein B100 (ApoB100) secretion, accompanied by an increase in ApoB100 early presecretory degradation via a predominantly lysosomal mechanism. Despite defective particle secretion in ANGPTL3−/− cells, targeted lipidomic analysis did not reveal neutral lipid accumulation in ANGPTL3−/− cells; rather ANGPTL3−/− cells demonstrated decreased secretion of newly synthesized triglycerides and increased fatty acid oxidation. Furthermore, RNA sequencing demonstrated significantly altered expression of key lipid metabolism genes, including targets of peroxisome proliferator-activated receptor α, consistent with decreased lipid anabolism and increased lipid catabolism. In contrast, CRISPR/Cas9 LDL receptor (LDLR) deletion in ANGPTL3−/− cells did not result in a secretion defect at baseline, but proteasomal inhibition strongly induced compensatory late presecretory degradation of ApoB100 and impaired its secretion. Additionally, these ANGPTL3−/−;LDLR−/− cells rescued the deficient LDL clearance of LDLR−/− cells. In summary, ANGPTL3 deficiency in the presence of functional LDLR leads to the production of fewer lipoprotein particles due to early presecretory defects in particle assembly that are associated with adaptive changes in intrahepatic lipid metabolism. In contrast, when LDLR is absent, ANGPTL3 deficiency is associated with late presecretory regulation of ApoB100 degradation without impaired secretion. Our findings therefore suggest an unanticipated intrahepatic role for ANGPTL3, whose function varies with LDLR status

    Skeletal muscle fibrosis: an overview

    No full text
    Extracellular matrix (ECM) is an essential component of skeletal muscle. It provides a framework structure that holds myofibers and blood capillaries and nerves supplying the muscle. In addition, it has a principal role in force transmission, maintenance and repair of muscle fibers. Excessive accumulation of ECM components, especially collagens, either due to excessive ECM production, alteration in ECM-degrading activities, or a combination of both is defined as fibrosis. Skeletal muscle fibrosis impairs muscle function, negatively affects muscle regeneration after injury and increases muscle susceptibility to re-injury, therefore, it is considered a major cause of muscle weakness. Fibrosis of skeletal muscle is a hallmark of muscular dystrophies, aging and severe muscle injuries. Thus, a better understanding of the mechanisms of muscle fibrosis will help to advance our knowledge of the events that occur in dystrophic muscle diseases and develop innovative anti-fibrotic therapies to reverse fibrosis in such pathologic conditions. This paper explores an overview of the process of muscle fibrosis, as well as different murine models for studying fibrosis in skeletal muscles. In addition, factors regulating fibrosis and strategies to inhibit muscle fibrosis are discussed.The author is supported by a Postdoctoral Fellowship from the University of Pretoria, South Africa.http://link.springer.com/journal/4412020-11-12hj2018Anatomy and Physiolog
    corecore