17 research outputs found

    Electromagnetic Transthoracic Nodule Localization for Minimally Invasive Pulmonary Resection

    Get PDF
    Background: Increased use of chest computed tomography and the institution of lung cancer screening have increased the detection of ground-glass and small pulmonary nodules. Intraoperative localization of these lesions via a minimally invasive thoracoscopic approach can be challenging. We present the feasibility of perioperative transthoracic percutaneous nodule localization using a novel electromagnetic navigation platform. Methods: This is a multicenter retrospective analysis of a prospectively collected database of patients who underwent perioperative electromagnetic transthoracic nodule localization before attempted minimally invasive resection between July 2016 and March 2018. Localization was performed using methylene blue or a mixture of methylene blue and the patient's blood (1:1 ratio). Patient, nodule, and procedure characteristics were collected and reported. Results: Thirty-one nodules were resected from 30 patients. Twenty-nine of 31 nodules (94%) were successfully localized. Minimally invasive resection was successful in 93% of patients (28/30); 7% (2/30) required conversion to thoracotomy. The median nodule size was 13 mm (interquartile range 25%-75%, 9.5-15.5), and the median depth from the surface of the visceral pleura to the nodule was 10 mm (interquartile range 25%-75%, 5.0-15.9). Seventy-one percent (22/31) of nodules were malignant. No complications associated with nodule localization were reported. Conclusions: The use of intraoperative electromagnetic transthoracic nodule localization before thoracoscopic resection of small and/or difficult to palpate lung nodules is safe and effective, potentially eliminating the need for direct nodule palpation. Use of this technique aids in minimally invasive localization and resection of small, deep, and/or ground-glass lung nodules

    Feasibility of a prototype carbon nanotube enabled stationary digital chest tomosynthesis system for identification of pulmonary nodules by pulmonologists

    Get PDF
    Background: Screen detected and incidental pulmonary nodules are increasingly common. Current guidelines recommend tissue sampling of solid nodules >8 mm. Bronchoscopic biopsy poses the lowest risk but is paired with the lowest diagnostic yield when compared to CT-guided biopsy or surgery. A need exists for a safe, mobile, low radiation dose, intra-procedural method to localize biopsy instruments within target nodules. This retrospective cross sectional reader feasibility study evaluates the ability of clinicians to identify pulmonary nodules using a prototype carbon nanotube radiation enabled stationary digital chest tomosynthesis system. Methods: Patients with pulmonary nodules on prior CT imaging were recruited and consented for imaging with stationary digital chest tomosynthesis. Five pulmonologists of varying training levels participated as readers. Following review of patient CT and a thoracic radiologist’s interpretation of nodule size and location the readers were tasked with interpreting the corresponding tomosynthesis scan to identify the same nodule found on CT. Results: Fifty-five patients were scanned with stationary digital chest tomosynthesis. The median nodule size was 6 mm (IQR =4–13 mm). Twenty nodules (37%) were greater than 8 mm. The radiation entrance dose for s-DCT was 0.6 mGy. A significant difference in identification of nodules using s-DCT was seen for nodules <8 vs. ≥8 mm in size (57.7% vs. 90.9%, CI: −0.375, −0.024; P<0.001). Inter-reader agreement was fair, and better for nodules ≥8 mm [0.278 (SE =0.043)]. Conclusions: With system and carbon nanotube array optimization, we hypothesize the detection rate for nodules will improve. Additional study is needed to evaluate its use in target and tool co-localization and target biopsy

    Incidence and clinical relevance of non-small cell lung cancer lymph node micro-metastasis detected by staging endobronchial ultrasound-guided transbronchial needle aspiration

    Get PDF
    Background: Approximately twenty percent of lymph node (LN) negative non-small cell lung cancer (NSCLC) patients who undergo curative intent surgery have pan-cytokeratin immunohistochemistry (IHC)-detectable occult micro-metastases (MMs) in resected LNs. The presence of the MMs in NSCLC is associated worsened outcomes. As a substantial proportion of NSCLC LN staging is conducted using endobronchial ultrasound-guided transbronchial needle aspiration (EBUS-TBNA), we sought to determine the frequency of detection of occult MMs in EBUS-TBNA specimens and to evaluate the impact of MMs on progression-free and overall survival. Methods: We performed retrospective IHC staining for pan-cytokeratin of EBUS-TBNA specimens previously deemed negative by a cytopathologist based on conventional hematoxylin and eosin staining. The results were correlated with clinical variables, including survival outcomes. Results: Of 887 patients screened, 44 patients were identified meeting inclusion criteria with sufficient additional tissue for testing. With respect to the time of the EBUS-TBNA procedure, 52% of patients were clinical stage I, 34% clinical stage II, and clinical 14% stage IIIa NSCLC. Three patients (6.8%) were found to have cytokeratin positive MMs. All 3 MMs detected were at N2 LN stations. The presence of MMs was associated with significantly decreased progression-free (median 210 vs. 1,293 days, P=0.0093) and overall survival (median 239 vs. 1,120 days, P=0.0357). Conclusions: Occult LN MMs can be detected in EBUS-TBNA specimens obtained during staging examinations and are associated with poor clinical outcomes. If prospectively confirmed, these results have significant implications for EBUS-TBNA specimen analyses and possibly for the NSCLC staging paradigm

    Team members' emotional displays as indicators of team functioning

    Get PDF
    Emotions are inherent to team life, yet it is unclear how observers use team members’ emotional expressions to make sense of team processes. Drawing on Emotions as Social Information theory, we propose that observers use team members’ emotional displays as a source of information to predict the team's trajectory. We argue and show that displays of sadness elicit more pessimistic inferences regarding team dynamics (e.g., trust, satisfaction, team effectiveness, conflict) compared to displays of happiness. Moreover, we find that this effect is strengthened when the future interaction between the team members is more ambiguous (i.e., under ethnic dissimilarity; Study 1) and when emotional displays can be clearly linked to the team members’ collective experience (Study 2). These studies shed light on when and how people use others’ emotional expressions to form impressions of teams

    Center Stage: The Crucial Role of Macrophytes in Regulating Trophic Interactions in Shallow Lake Wetlands

    No full text
    Hydrophilic, or water-loving, macrophytes characterize wetland ecosystems, indicating prerequisite conditions of hydric soils and sufficient hydrology. The presence of such macrophytes is a key descriptor in multiple wetland def- initions (Lewis 2001a) and macrophytes may be further used to actually describe particular types of wetlands, such as cattail marshes. Macrophytes contribute significant biomass to wetland systems and represent a critical component of wetland biogeochemistry as primary producers and drivers of organic matter cycling within aquatic systems. In this chapter, we argue that macrophytes occupy the center of trophic interactions in shallow lakes, influ- encing outcomes through structural, behavioral and chemical interactions. We define shallow lakes as permanently flooded wetlands that often contain submerged or floating macrophytes and that may be surrounded by emergent vegetation (i.e.marshy habitat). Shallow remains a relative term in limnology circles, but typically is less than 3 m average depth, such that macrophytes can fill a substantial portion of the water column and stratification is neither pre- dictable nor long-term. Such systems may be termed lakes, ponds or wetlands, depending on their size and the ecological context. Macrophytes may regulate trophic interactions in ephemeral systems without permanent inundation
    corecore