78 research outputs found
Recommended from our members
PEG−peptide conjugates
The remarkable diversity of the self-assembly behavior
of PEG−peptides is reviewed, including self-assemblies formed by PEG−peptides with β-sheet and α-helical (coiled-coil) peptide sequences. The modes of self-assembly in solution and in the solid state are discussed. Additionally, applications in bionanotechnology and synthetic materials science are summarized
Recommended from our members
Solution structures of {beta}-amyloid{sub 10-35} and {beta}-amyloid{sub 10-35} PEG3000 aggregates.
Small angle neutron and x-ray scattering (SANS/SAXS) studies were conducted on the structure of the aggregates formed from both the truncated model peptide {beta}-Amyloid(10-35) (A{beta}{sub 10-35}) and a block copolymer {beta}-Amyloid (10-35)-PEG3000 (A{beta}{sub 10-35}-PEG) in D{sub 2}O at pHs from 3.0 to 7.0. These studies indicate that A{beta}{sub 10-35} aggregates into rod-like particles (fibril) and their radii are strongly dependent on the Pm of the solution. The fibril-fibril association in A{beta}{sub 10-35} solutions is less of pH < 5.6, but becomes larger at higher pH. A{beta}{sub 10-35}-PEG also assembles into rod-like particles whose radius is larger by about 30 {angstrom} than that for A{beta}{sub 10-35} fibril at pH 4.2, while it is about 23 {angstrom} larger at higher pH. Contrast matching SAXS/SANS experiments that eliminate the coherent scattering from PEG reveal that PEG moiety is located at the periphery of the fibril. Also, the mass per unit length of the peptide portion is similar for both A{beta}{sub 10-35} and A{beta}{sub 10-35}-PEG fibrils at pH 5.6. The mass per unit length of the rods from SANS provides key information on the packing of A{beta}{sub 10-35} peptides in the fibril
- …