600 research outputs found

    Winds, B-Fields, and Magnetotails of Pulsars

    Full text link
    We investigate the emission of rotating magnetized neutron stars due to the acceleration and radiation of particles in the relativistic wind and in the magnetotail of the star. We consider that the charged particles are accelerated by driven collisionless reconnection. Outside of the light cylinder, the star's rotation acts to wind up the magnetic field to form a predominantly azimuthal, slowly decreasing with distance, magnetic field of opposite polarity on either side of the equatorial plane normal to the star's rotation axis. The magnetic field annihilates across the equatorial plane with the magnetic energy going to accelerate the charged particles to relativistic energies. For a typical supersonically moving pulsar, the star's wind extends outward to the standoff distance with the interstellar medium. At larger distances, the power output of pulsar's wind E˙w\dot{E}_w of electromagnetic field and relativistic particles is {\it redirected and collimated into the magnetotail} of the star. In the magnetotail it is proposed that equipartition is reached between the magnetic energy and the relativistic particle energy. For such conditions, synchrotron radiation from the magnetotails may be a significant fraction of E˙w\dot{E}_w for high velocity pulsars. An equation is derived for the radius of the magnetotail rm(z′)r_m(z^\prime) as a function of distance z′z^\prime from the star. For large distances z′z^\prime, of the order of the distance travelled by the star, we argue that the magnetotail has a `trumpet' shape owing to the slowing down of the magnetotail flow.Comment: 11 pages, 4 figures, accepted for publication in Ap

    Pakistani children’s experiences of growing up with Beta-Thalassemia Major

    Get PDF
    In this study, we explored the lived experiences of children with beta-thalassemia major (β-TM). We considered children as experts on their experiences in contrast to the prevalent approach of asking parents or other adults about children’s perspectives. The sample consisted of 12 children aged 8 to12 years. There were two stages to data collection. In Stage 1 we employed two focus group discussions and two role plays and analyzed the data thematically. This directly informed Stage 2, consisting of 12 in-depth interviews subjected to interpretative phenomenological analysis. From our findings we show that living with β-TM involves a continuous struggle between feelings of being different and strategies to minimize these differences to strive for normalcy. We suggest that understanding the experiences of living with β-TM from children’s perspectives can provide unique insights into their experiences, which can fill the gap in the existing, predominantly adult-oriented research on chronic illness

    Particle interactions with single or multiple 3D solar reconnecting current sheets

    Full text link
    The acceleration of charged particles (electrons and protons) in flaring solar active regions is analyzed by numerical experiments. The acceleration is modelled as a stochastic process taking place by the interaction of the particles with local magnetic reconnection sites via multiple steps. Two types of local reconnecting topologies are studied: the Harris-type and the X-point. A formula for the maximum kinetic energy gain in a Harris-type current sheet, found in a previous work of ours, fits well the numerical data for a single step of the process. A generalization is then given approximating the kinetic energy gain through an X-point. In the case of the multiple step process, in both topologies the particles' kinetic energy distribution is found to acquire a practically invariant form after a small number of steps. This tendency is interpreted theoretically. Other characteristics of the acceleration process are given, such as the mean acceleration time and the pitch angle distributions of the particles.Comment: 18 pages, 9 figures, Solar Physics, in pres

    Lithium in the Intermediate-Age Open Cluster, NGC 3680

    Full text link
    High-dispersion spectra centered on the Li 6708 A line have been obtained for 70 potential members of the open cluster NGC 3680, with an emphasis on stars in the turnoff region. A measurable Li abundance has been derived for 53 stars, 39 of which have radial velocities and proper motions consistent with cluster membership. After being transferred to common temperature and abundance scales, previous Li estimates have been combined to generate a sample of 49 members, 40 of which bracket the cluster Li-dip. Spectroscopic elemental analysis of 8 giants and 5 turnoff stars produces [Fe/H] = -0.17 +/- 0.07 (sd) and -0.07 +/- 0.02 (sd), respectively. We also report measurements of Ca, Si and Ni which are consistent with scaled-solar ratios within the errors. Adopting [Fe/H] = -0.08 (Sect. 3.6), Y^2 isochrone comparisons lead to an age of 1.75 +/- 0.10 Gyr and an apparent modulus of (m-M) = 10.30 +/- 0.15 for the cluster, placing the center of the Li-dip at 1.35 +/- 0.03 solar masses. Among the giants, 5 of 9 cluster members are now known to have measurable Li with A(Li) near 1.0. A combined sample of dwarfs in the Hyades and Praesepe is used to delineate the Li-dip profile at 0.7 Gyr and [Fe/H] = +0.15, establishing its center at 1.42 +/- 0.02 solar masses and noting the possible existence of secondary dip on its red boundary. When evolved to the typical age of the clusters NGC 752, IC 4651 and NGC 3680, the Hyades/Praesepe Li-dip profile reproduces the observed morphology of the combined Li-dip within the CMD's of the intermediate-age clusters while implying a metallicity dependence for the central mass of the Li-dip given by Mass = (1.38 +/-0.04) + (0.4 +/- 0.2)[Fe/H]. The implications of the similarity of the Li-dichotomy among giants in NGC 752 and IC 4651 and the disagreement with the pattern among NGC 3680 giants are discussed.Comment: Latex ms. is 56 pages, including 10 figures and 4 tables. Accepted for the Astronomical Journa

    Nucleation of vortex arrays in rotating anisotropic Bose-Einstein condensates

    Full text link
    The nucleation of vortices and the resulting structures of vortex arrays in dilute, trapped, zero-temperature Bose-Einstein condensates are investigated numerically. Vortices are generated by rotating a three-dimensional, anisotropic harmonic atom trap. The condensate ground state is obtained by propagating the Gross-Pitaevskii equation in imaginary time. Vortices first appear at a rotation frequency significantly larger than the critical frequency for vortex stabilization. This is consistent with a critical velocity mechanism for vortex nucleation. At higher frequencies, the structures of the vortex arrays are strongly influenced by trap geometry.Comment: 5 pages, two embedded figures. To appear in Phys. Rev. A (RC

    Detector Development for the CRESST Experiment

    Get PDF
    Recently low-mass dark matter direct searches have been hindered by a low-energy background, drastically reducing the physics reach of the experiments. In the CRESST-III experiment, this signal is characterised by a significant increase of events below 200 eV. As the origin of this background is still unknown, it became necessary to develop new detector designs to reach a better understanding of the observations. Within the CRESST collaboration, three new different detector layouts have been developed, and they are presented in this contribution

    Optimal Operation of Cryogenic Calorimeters Through Deep Reinforcement Learning

    Get PDF
    Cryogenic phonon detectors with transition-edge sensors achieve the best sensitivity to sub-GeV/c2 dark matter interactions with nuclei in current direct detection experiments. In such devices, the temperature of the thermometer and the bias current in its readout circuit need careful optimization to achieve optimal detector performance. This task is not trivial and is typically done manually by an expert. In our work, we automated the procedure with reinforcement learning in two settings. First, we trained on a simulation of the response of three Cryogenic Rare Event Search with Superconducting Thermometers (CRESST) detectors used as a virtual reinforcement learning environment. Second, we trained live on the same detectors operated in the CRESST underground setup. In both cases, we were able to optimize a standard detector as fast and with comparable results as human experts. Our method enables the tuning of large-scale cryogenic detector setups with minimal manual interventions
    • …
    corecore