96 research outputs found

    Operator independent reliability of direct augmented reality navigated pedicle screw placement and rod bending

    Full text link
    Background AR based navigation of spine surgeries may not only provide accurate surgical execution but also operator independency by compensating for potential skill deficits. “Direct” AR-navigation, namely superposing trajectories on anatomy directly, have not been investigated regarding their accuracy and operator's dependence. Purpose of this study was to prove operator independent reliability and accuracy of both AR assisted pedicle screw navigation and AR assisted rod bending in a cadaver setting. Methods Two experienced spine surgeons and two biomedical engineers (laymen) performed independently from each other pedicle screw instrumentations from L1-L5 in a total of eight lumbar cadaver specimens (20 screws/operator) using a fluoroscopy-free AR based navigation method. Screw fitting rods from L1 to S2-Ala-Ileum were bent bilaterally using an AR based rod bending navigation method (4 rods/operator). Outcome measures were pedicle perforations, accuracy compared to preoperative plan, registration time, navigation time, total rod bending time and operator's satisfaction for these procedures. Results 97.5% of all screws were safely placed (<2 mm perforation), overall mean deviation from planned trajectory was 6.8±3.9°, deviation from planned entry point was 4±2.7 mm, registration time per vertebra was 2:25 min (00:56 to 10:00 min), navigation time per screw was 1:07 min (00:15 to 12:43 min) rod bending time per rod was 4:22 min (02:07 to 10:39 min), operator's satisfaction with AR based screw and rod navigation was 5.38±0.67 (1 to 6, 6 being the best rate). Comparison of surgeons and laymen revealed significant difference in navigation time (1:01 min; 00:15 to 3:00 min vs. 01:37 min; 00:23 to 12:43 min; p = 0.004, respectively) but not in pedicle perforation rate. Conclusions Direct AR based screw and rod navigation using a surface digitization registration technique is reliable and independent of surgical experience. The accuracy of pedicle screw insertion in the lumbar spine is comparable with the current standard techniques

    Partial sacrectomy with patient-specific osteotomy guides

    Full text link
    Background Chordomas are rare, locally aggressive, malignant tumors. Surgical resection with sufficient margins defines the outcome. However, the necessity for wide margins often leads to sacrifice of important neurological structures. 3D-printed osteotomy guides are a promising solution for precise execution of surgical resection. We present probably the first sacrococcygeal chordoma resection with 3D-printed guides. Methods The case of a 49-year-old woman with a sacrococcygeal chordoma, resected with help of 3-D pre-operative planning and patient-specific 3D-printed osteotomy guides, is reported in detail. Results A sufficient tumor excision could be performed successfully while sparing nerve root S4. The planed margin has been exactly maintained, as confirmed by histology. The patient demonstrated an excellent clinical outcome with no evidence of local recurrence. Conclusions 3-D pre-operative planning and patient-specific osteotomy guides can be used for planning and performing en-bloc surgical resection of sacral chordomas

    Pedicle subtraction osteotomy with patient-specific instruments

    Full text link
    Background Although the utility of patient-specific instruments (PSI) has been well established for complex osteotomies in orthopedic surgery, it is yet to be comparatively analyzed for complex spinal deformity correction, such as pedicle subtraction osteotomy (PSO). Methods Six thoracolumbar human cadavers were used to perform nine PSOs using the free-hand (FH) technique and nine with PSI (in total 18 PSOs). Osteotomy planes were planned on the basis of preoperative computed tomography (CT). A closing-wedge angle of 30° was targeted for each PSO. Postoperative CT scans were obtained to measure segmental lordosis correction and the deviation from the planned 30° correction as well as the osseous gap of posterior elements. Results The time required to perform a PSO was 18:22 (range 10:22–26:38) min and 14:14 (range 10:13–22:16) min in the PSI and FH groups, respectively (p = 0.489). The PSI group had a significantly higher lordosis gain (29°, range 23–31° vs. 21°, range 13–34°; p = 0.015). The lordosis gain was significantly more accurate with PSI (deviation angle: 1°; range 0–7°) than with the FH technique (9°; range 4–17°; p = 0.003). PSI achieved a significantly smaller residual osseous gap of the posterior elements (5 mm; range 0–9 mm) than the FH group (11 mm; range 3–27 mm; p = 0.043). With PSI, an angular difference of 3° (range 1–12°), a translational offset of 1 (range 0–6) mm at the level of the lamina, and a vertebral body entry point deviation of 1 (range 0–4) mm was achieved in the osteotomies. Conclusions PSI-guided PSO can be a more feasible and accurate approach in achieving a planned lordosis angle than the traditional FH technique in a cadaver model. This approach further reduced osseous gaps, potentially promoting higher fusion rates in vivo

    Clinical relevance of occult infections in spinal pseudarthrosis revision

    Full text link
    BACKGROUND Occult infections in spinal pseudarthrosis revisions have been reported in the literature, but the relevance of such an infection on patient outcomes is unknown. We aimed to elucidate clinical outcomes and re-revision risks between patients with and without occult infections in spinal revision surgery for pseudarthrosis. METHODS In this matched case-control study, we identified 128 patients who underwent thoracolumbar revision surgery from 2014-2019 for pseudarthrosis of the spine. Among them, 13 (10.2%) revealed an occult infection (defined by at least two positive intraoperative tissue samples with the same pathogen), and nine of these 13 were available for follow-up. We selected 18 of the 115 controls using a 2:1 fuzzy matching based on fusion length and length of follow-up. The patients were followed up to assess subsequent re-revision surgeries and the following postoperative patient-reported outcome measures (PROMs): overall satisfaction, Oswestry Disability Index, 5-level EQ-5D, and Short Form 36. RESULTS Patient characteristics, surgical data, and length of follow-up were equal between both study groups. The rate of re-revision free survival after the initial pseudarthrosis revision surgery was higher in the occult infection group (77.8%) than the non-infectious controls (44.4%), although not significantly (0.22). The total number of re-revision surgeries, including re-re-revisions, was thirteen (in ten patients) in the control and two (in two patients) in the occult infection group (p = 0.08) after a median follow-up of 24 months (range 13-75). Four cases in the control group underwent re-revision for pseudarthrosis compared to none in the infected group. Satisfactory scores were recorded in all PROMs, with similar scores between the two groups. CONCLUSIONS The presence of an occult infection accompanying spinal pseudarthrosis revision was not inferior to non-infected pseudarthrosis revisions in a matched, small sample size cohort study. This may be explained due to the possibility of targeted treatment of the identified cause of pseudarthrosis

    Spinal decompression with patient-specific guides

    Full text link
    BACKGROUND CONTEXT Patient-specific instruments (PSI) have been well established in spine surgery for pedicle screw placement. However, its utility in spinal decompression surgery is yet to be investigated. PURPOSE The purpose of this study was to investigate the feasibility and utility of PSI in spinal decompression surgery compared with conventional freehand (FH) technique for both expert and novice surgeons. STUDY DESIGN Human cadaver study. METHODS Thirty-two midline decompressions were performed on 4 fresh-frozen human cadavers. An expert spine surgeon and an orthopedic resident (novice) each performed 8 FH and 8 PSI-guided decompressions. Surgical time for each decompression method was measured. Postoperative decompression area, cranial decompression extent in relation to the intervertebral disc, and lateral recess bony overhang were measured on postoperative CT-scans. In the PSI-group, the decompression area and osteotomy accuracy were evaluated. RESULTS The surgical time was similar in both techniques, with 07:25 min (PSI) versus 06:53 min (FH) for the expert surgeon and 12:36 min (PSI) vs. 11:54 (FH) for the novice surgeon. The postoperative cranial decompression extent and the lateral recess bony overhang did not differ between both techniques and surgeons. Further, the postoperative decompression area was significantly larger with the PSI than with the FH for the novice surgeon (477 vs. 305 mm2^{2}; p=.01), but no significant difference was found between both techniques for the expert surgeon. The execution of the decompression differed from the preoperative plan in the decompression area by 5%, and the osteotomy planes had an accuracy of 1-3 mm. CONCLUSION PSI-guided decompression is feasible and accurate with similar procedure time to the standard FH technique in a cadaver model, which warrants further investigation in vivo. In comparison to the FH technique, a more extensive decompression was achieved with PSI in the novice surgeon's hands in this study. CLINICAL SIGNIFICANCE The PSI-guided spinal decompression technique may be a useful alternative to FH decompression in certain situations. A special potential of the PSI technique could lie in the technical aid for novice surgeons and in situations with unconventional anatomy or pathologies such as deformity or tumor. This study serves as a starting point toward PSI-guided spinal decompression, but further in vivo investigations are necessary

    Residual motion of cortical versus pedicle screw constructs after decompression, interbody fusion and cross-link augmentation

    Full text link
    PURPOSE To compare the residual range of motion (ROM) of cortical screw (CS) versus pedicle screw (PS) instrumented lumbar segments and the additional effect of transforaminal interbody fusion (TLIF) and cross-link (CL) augmentation. METHODS ROM of thirty-five human cadaver lumbar segments in flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression (AC) was recorded. After instrumenting the segments with PS (n = 17) and CS (n = 18), ROM in relation to the uninstrumented segments was evaluated without and with CL augmentation before and after decompression and TLIF. RESULTS CS and PS instrumentations both significantly reduced ROM in all loading directions, except AC. In undecompressed segments, a significantly lower relative (and absolute) reduction of motion in LB was found with CS 61% (absolute 3.3°) as compared to PS 71% (4.0°; p = 0.048). FE, AR, AS, LS, and AC values were similar between CS and PS instrumented segments without interbody fusion. After decompression and TLIF insertion, no difference between CS and PS was found in LB and neither in any other loading direction. CL augmentation did not diminish differences in LB between CS and PS in the undecompressed state but led to an additional small AR reduction of 11% (0.15°) in CS and 7% (0.05°) in PS instrumentation. CONCLUSION Similar residual motion is found with CS and PS instrumentation, except of slightly, but significantly inferior reduction of ROM in LB with CS. Differences between CS and PS in diminish with TLIF but not with CL augmentation

    Residual motion of different posterior instrumentation and interbody fusion constructs

    Get PDF
    PURPOSE: To elucidate residual motion of cortical screw (CS) and pedicle screw (PS) constructs with unilateral posterior lumbar interbody fusion (ul-PLIF), bilateral PLIF (bl-PLIF), facet-sparing transforaminal lumbar interbody fusion (fs-TLIF), and facet-resecting TLIF (fr-TLIF). METHODS: A total of 35 human cadaver lumbar segments were instrumented with PS (n = 18) and CS (n = 17). Range of motion (ROM) and relative ROM changes were recorded in flexion/extension (FE), lateral bending (LB), axial rotation (AR), lateral shear (LS), anterior shear (AS), and axial compression (AC) in five instrumentational states: without interbody fusion (wo-IF), ul-PLIF, bl-PLIF, fs-TLIF, and fr-TLIF. RESULTS: Whereas FE, LB, AR, and AC noticeably differed between the instrumentational states, AS and LS were less prominently affected. Compared to wo-IF, ul-PLIF caused a significant increase in ROM with PS (FE + 42%, LB + 24%, AR + 34%, and AC + 77%), however, such changes were non-significant with CS. ROM was similar between wo-IF and all other interbody fusion techniques. Insertion of a second PLIF (bl-PLIF) significantly decreased ROM with CS (FE -17%, LB -26%, AR -20%, AC -51%) and PS (FE - 23%, LB - 14%, AR - 20%, AC - 45%,). Facet removal in TLIF significantly increased ROM with CS (FE + 6%, LB + 9%, AR + 17%, AC of + 23%) and PS (FE + 7%, AR + 12%, AC + 13%). CONCLUSION: bl-PLIF and TLIF show similarly low residual motion in both PS and CS constructs, but ul-PLIF results in increased motion. The fs-TLIF technique is able to further decrease motion compared to fr-TLIF in both the CS and PS constructs

    Long-term outcomes of the four-corner fusion of the wrist: A systematic review

    Full text link
    BACKGROUND: Four-corner fusion (4CF) is a motion sparing salvage procedure that is used to treat osteoarthritis secondary to advanced scapholunate collapse or longstanding scaphoid nonunion advanced collapse. Little is known about the long-term survivorship and outcomes of 4CF. AIM: To report on clinical and functional long-term outcomes as well as conversion rates to total wrist fusion or arthroplasty. METHODS: The systematic review protocol was registered in the international prospective register of systematic reviews (PROSPERO) and followed the PRISMA guidelines. Original articles were screened using four different databases. Studies with a minimum Level IV of evidence that reported on long-term outcome after 4CF with a minimum follow-up of 5 years were included. Quality assessment was performed using the Methodological Index for Non-Randomized Studies criteria. RESULTS: A total of 11 studies including 436 wrists with a mean follow-up of 11 ± 4 years (range: 6-18 years) was included. Quality assessment according to Methodological Index for Non-Randomized Studies criteria tool averaged 69% ± 11% (range: 50%-87%). Fusion rate could be extracted from 9/11 studies and averaged 91%. Patient-reported outcomes were extracted at last follow-up from 8 studies with an average visual analog scale of 1 ± 1 (range: 0-2) and across 9 studies with an average Disabilities of the Arm, Shoulder and Hand score of 21 ± 8 (range: 8-37). At last follow-up, the cumulative conversion rate to total wrist fusion averaged 6%. There were no conversions to total wrist arthroplasty. CONCLUSION: The 4CF of the wrist is a reliable surgical technique, capable of achieving a good long-term patient satisfaction and survivorship with low rates of conversion to total wrist fusion

    Posterior spinal instrumentation and decompression with or without cross-link?

    Full text link
    ackground: Posterior lumbar instrumentation requires sufficient primary stiffness to ensure bony fusion and to avoid pseudarthrosis, screw loosening, or implant failure. To enhance primary construct stiffness, transverse cross-link (CL) connectors attached to the vertical rods can be used. Their effect on the stability of a spinal instrumentation with simultaneous decompression is yet not clear. This study aimed to evaluate the impact of CL augmentation on single-level lumbar instrumentation stiffness after gradual decompression procedures. Methods: Seventeen vertebral segments (6 L1/2, 6 L3/4, 5 L5/S1) of 12 fresh-frozen human cadavers were instrumented with a transpedicular screw-rod construct following the traditional pedicle screw trajectory. Range of motion (ROM) of the segments was sequentially recorded before and after four procedures: (A) instrumented before decompression, (B) instrumented after unilateral laminotomy, (C) instrumented after midline bilateral laminotomy, and (D) instrumented after unilateral facetectomy (with transforaminal lumbar interbody fusion [TLIF]). Each test was performed with and without CL augmentation. The motion between the cranial and caudal vertebrae was evaluated in all six major loading directions: flexion/extension (FE), lateral bending (LB), lateral shear (LS), anterior shear (AS), axial rotation (AR), and axial compression/distraction (AC). Results: ROM was significantly reduced with CL augmentation in AR by Δ0.03-0.18° (7-12%) with a significantly higher ROM reduction after more extensive decompression. Furthermore, slight reductions in FE and LB were observed; these reached statistical significance for FE after facetectomy and TLIF insertion only (Δ0.15; 3%). The instrumentation levels did not reveal any subgroup differences. Conclusion: CL augmentation reduces AR-ROM by 7-12% in single-level instrumentation of the lumbar spine, with the effect increasing along with the extensiveness of the decompression technique. In light of the discrete absolute changes, CL augmentation may be warranted for highly unstable vertebral segments rather than for standard single-level posterior spinal fusion and decompression. Keywords: Biomechanical; Cross-connector; Cross-link; Instrumentation; Segmental stability; Spine; lumbar
    • …
    corecore