257 research outputs found
A Bottom Up Perspective to Understanding the Dynamics of Team Roles in Mission Critical Teams
There is a long history, dating back to the 50 s, which examines the manner in which team roles contribute to effective team performance. However, much of this work has been built on ad hoc teams working together for short periods of time under conditions of minimal stress. Additionally, research has been conducted with little attention paid to the importance of temporal factors, despite repeated calls for the importance of considering time in team research (e.g., Mohammed et al., 2009). To begin to understand team roles and how temporal aspects may impact the types of team roles employed when teams are working in extreme mission critical environments, the current manuscript uses a data-driven, bottom-up approach. Specifically, we employ the use of retrospective historical data as our input and a historiometric approach (Simonton, 2003). Source documents consist primarily of autobiographies, memoires, biographies, and first-hand accounts of crew interaction during spaceflight. Critical incidents regarding team interaction were extracted from these source documents and independently coded for team roles by two trained raters. Results of the study speak to the importance of task and social roles within teams that are predominantly intact and operating in extreme environments where mistakes can be life threatening. Evidence for the following task (i.e., coordinator, boundary spanner, team leader, evaluator, critic, information provider, team player, and innovator) and social roles (i.e., team builder, nurturer, harmonizer, entertainer, jokester, and the negative roles of attention seeker and negativist) were found. While it is often task roles that receive the greatest attention, results point to the importance of not neglecting the socioemotional health of the team (and the corresponding roles). Results also indicated that while some roles were consistently enacted independent of temporal considerations (e.g., mission length), the degree to which others were enacted varied across missions of differing lengths. Additionally, based on the current sample we see the following trends: (1) increased enactment of the team builder role as mission duration increases, (2) prominence of the entertainer role, and (3) increased emphasis on the visionary/problem solver role on missions over 2 years
Shedding Light on Team Adaptation: Does Experience Matter?
Investigating the team adaptation process in two laboratory experiments (N = 144 teams, n = 504 participants), we found no benefits for teams with team adaptation experience (vs. without) nor for teams with external team adaptation experience (vs. with internal experience). Collective experience under routine and nonroutine conditions seems to provide teams with the resources to adapt. We further found that executing the team adaptation process did not always lead to high team performance; different team performance requirements might explain these findings. We discuss how our experimental findings can extend our understanding of team adaptation toward new boundary conditions
Pancreatic β-Cell Death in Response to Pro-Inflammatory Cytokines Is Distinct from Genuine Apoptosis
A reduction in functional β-cell mass leads to both major forms of diabetes; pro-inflammatory cytokines, such as interleukin-1beta (IL-1β) and gamma-interferon (γ-IFN), activate signaling pathways that direct pancreatic β-cell death and dysfunction. However, the molecular mechanism of β-cell death in this context is not well understood. In this report, we tested the hypothesis that individual cellular death pathways display characteristic phenotypes that allow them to be distinguished by the precise biochemical and metabolic responses that occur during stimulus-specific initiation. Using 832/13 and INS-1E rat insulinoma cells and isolated rat islets, we provide evidence that apoptosis is unlikely to be the primary pathway underlying β-cell death in response to IL-1β+γ-IFN. This conclusion was reached via the experimental results of several different interdisciplinary strategies, which included: 1) tandem mass spectrometry to delineate the metabolic differences between IL-1β+γ-IFN exposure versus apoptotic induction by camptothecin and 2) pharmacological and molecular interference with either NF-κB activity or apoptosome formation. These approaches provided clear distinctions in cell death pathways initiated by pro-inflammatory cytokines and bona fide inducers of apoptosis. Collectively, the results reported herein demonstrate that pancreatic β-cells undergo apoptosis in response to camptothecin or staurosporine, but not pro-inflammatory cytokines.
DOI: 10.1371/journal.pone.002248
Measuring Transit Signal Recovery in the Kepler Pipeline II: Detection Efficiency as Calculated in One Year of Data
The Kepler planet sample can only be used to reconstruct the underlying
planet occurrence rate if the detection efficiency of the Kepler pipeline is
known, here we present the results of a second experiment aimed at
characterising this detection efficiency. We inject simulated transiting planet
signals into the pixel data of ~10,000 targets, spanning one year of
observations, and process the pixels as normal. We compare the set of
detections made by the pipeline with the expectation from the set of simulated
planets, and construct a sensitivity curve of signal recovery as a function of
the signal-to-noise of the simulated transit signal train. The sensitivity
curve does not meet the hypothetical maximum detection efficiency, however it
is not as pessimistic as some of the published estimates of the detection
efficiency. For the FGK stars in our sample, the sensitivity curve is well fit
by a gamma function with the coefficients a = 4.35 and b = 1.05. We also find
that the pipeline algorithms recover the depths and periods of the injected
signals with very high fidelity, especially for periods longer than 10 days. We
perform a simplified occurrence rate calculation using the measured detection
efficiency compared to previous assumptions of the detection efficiency found
in the literature to demonstrate the systematic error introduced into the
resulting occurrence rates. The discrepancies in the calculated occurrence
rates may go some way towards reconciling some of the inconsistencies found in
the literature.Comment: 13 pages, 7 figures, 1 electronic table, accepted by Ap
A Photometric Survey for Variables and Transits in the Field of Praesepe with KELT
The Kilodegree Extremely Little Telescope (KELT) project is a small aperture,
wide-angle search for planetary transits of solar-type stars. In this paper, we
present the results of a commissioning campaign with the KELT telescope to
observe the open cluster Praesepe for 34 nights in early 2005. Lightcurves were
obtained for 69,337 stars, out of which we identify 58 long period variables
and 152 periodic variables. Sixteen of these are previously known as variable,
yielding 194 newly discovered variable stars for which we provide properties
and lightcurves. We also searched for planetary-like transits, finding four
transit candidates. Follow-up observations indicate that two of the candidates
are astrophysical false positives, with two candidates remaining as potential
planetary transits.Comment: 45 pages, 16 figures. Submitted to AJ. PDF version with full
resolution figures located at
http://www.astronomy.ohio-state.edu/~pepper/kelt.pd
A historiometric analysis of leadership in mission critical multiteam environments
a r t i c l e i n f o a b s t r a c t Perhaps nowhere are leaders more pivotal than in the extreme contexts of responding to the aftermath of natural disasters or orchestrating post-war stability, support, transition, and reconstruction efforts. In the current study, historiometric methods were employed in order to elucidate the aspects of leadership essential in these extreme contexts. These contexts were chosen for two reasons: (1) they capture the external networking required of many complex organizational tasks and (2) they are mission critical -the outcomes of leadership in these contexts are of great importance. One hundred and ten critical incidents were written describing instances of effective and ineffective interaction within these systems, and 55 of them were classified as primarily describing leadership issues. Critical incidents were then sorted, translated, and retranslated in order to inductively derive a set of leader functions essential for orchestrating effort in mission critical multiteam contexts
Thiobenzothiazole-modified hydrocortisones display anti-inflammatory activity with reduced impact on islet β-cell function
© 2015, American Society for Biochemistry and Molecular Biology Inc. All rights reserved. Glucocorticoids signal through the glucocorticoid receptor (GR) and are administered clinically for a variety of situations, including inflammatory disorders, specific cancers, rheumatoid arthritis, and organ/tissue transplantation. However, glucocorticoid therapy is also associated with additional complications, including steroid-induced diabetes. We hypothesized that modification of the steroid backbone is one strategy to enhance the therapeutic potential of GR activation. Toward this goal, two commercially unavailable, thiobenzothiazole-containing derivatives of hydrocortisone (termed MS4 and MS6) were examined using 832/13 rat insulinoma cells as well as rodent and human islets. We found that MS4 had transrepression properties but lacked transactivation ability, whereas MS6 retained both transactivation and transrepression activities. In addition, MS4 and MS6 both displayed anti-inflammatory activity. Furthermore, MS4 displayed reduced impact on islet β-cell function in both rodent and human islets. Similar to dexamethasone, MS6 promoted adipocyte development in vitro, whereas MS4 did not. Moreover, neither MS4 nor MS6 activated the Pck1 (Pepck) gene in primary rat hepatocytes. We conclude that modification of the functional groups attached to the D-ring of the hydrocortisone steroid molecule produces compounds with altered structure-function GR agonist activity with decreased impact on insulin secretion and reduced adipogenic potential but with preservation of anti-inflammatory activity
Detection of Potential Transit Signals in Sixteen Quarters of Kepler Mission Data
We present the results of a search for potential transit signals in four
years of photometry data acquired by the Kepler Mission. The targets of the
search include 111,800 stars which were observed for the entire interval and
85,522 stars which were observed for a subset of the interval. We found that
9,743 targets contained at least one signal consistent with the signature of a
transiting or eclipsing object, where the criteria for detection are
periodicity of the detected transits, adequate signal-to-noise ratio, and
acceptance by a number of tests which reject false positive detections. When
targets that had produced a signal were searched repeatedly, an additional
6,542 signals were detected on 3,223 target stars, for a total of 16,285
potential detections. Comparison of the set of detected signals with a set of
known and vetted transit events in the Kepler field of view shows that the
recovery rate for these signals is 96.9%. The ensemble properties of the
detected signals are reviewed.Comment: Accepted by ApJ Supplemen
- …