696 research outputs found
Prospective blinded evaluation of a novel sensing methodology designed to reduce inappropriate shocks by the subcutaneous implantable cardioverter-defibrillator
Background: Most inappropriate shocks from the subcutaneous implantable cardioverter-defibrillator (S-ICD) are caused by cardiac oversensing. A novel sensing methodology, SMART Pass (SP; Boston Scientific Corporation, Natick, MA), aims to reduce cardiac oversensing. Objective: The purpose of this study was to evaluate the effect of SP on shocks in ambulatory patients with S-ICD. Methods: Patients implanted in 2015–2016 and enrolled in a remote patient monitoring system were included and followed for 1 year. Shocks were adjudicated by 3 independent blinded reviewers as appropriate or inappropriate. Shock incidence was calculated for patients with SP programmed enabled or disabled at implantation, censoring patients when SP programming changed or at the last transmission. The SP setting (enabled vs disabled) was modeled as a time-dependent Cox regression variable. Results: The cohort consisted of 1984 patients, and a total of 880 shocks were adjudicated. At implantation, SP was enabled in 655 patients (33%) and disabled in 1329 patients (67%). SP reduced the risk for the first inappropriate shock by 50% (P <.001) and the risk for all inappropriate shocks by 68% (P <.001) in multivariate analysis adjusted for age and device programming. The incidence of inappropriate shocks was 4.3% in the SP enabled arm vs 9.7% in the SP disabled arm. The incidence of appropriate shocks was similar (5.2
Supermassive Black Hole Binaries: The Search Continues
Gravitationally bound supermassive black hole binaries (SBHBs) are thought to
be a natural product of galactic mergers and growth of the large scale
structure in the universe. They however remain observationally elusive, thus
raising a question about characteristic observational signatures associated
with these systems. In this conference proceeding I discuss current theoretical
understanding and latest advances and prospects in observational searches for
SBHBs.Comment: 17 pages, 4 figures. To appear in the Proceedings of 2014 Sant Cugat
Forum on Astrophysics. Astrophysics and Space Science Proceedings, ed.
C.Sopuerta (Berlin: Springer-Verlag
Long-term alterations in brain and behavior after postnatal Zika virus infection in infant macaques
Zika virus (ZIKV) infection has a profound impact on the fetal nervous system. The postnatal period is also a time of rapid brain growth, and it is important to understand the potential neurobehavioral consequences of ZIKV infection during infancy. Here we show that postnatal ZIKV infection in a rhesus macaque model resulted in long-term behavioral, motor, and cognitive changes, including increased emotional reactivity, decreased social contact, loss of balance, and deficits in visual recognition memory at one year of age. Structural and functional MRI showed that ZIKV-infected infant rhesus macaques had persistent enlargement of lateral ventricles, smaller volumes and altered functional connectivity between brain areas important for socioemotional behavior, cognitive, and motor function (e.g. amygdala, hippocampus, cerebellum). Neuropathological changes corresponded with neuroimaging results and were consistent with the behavioral and memory deficits. Overall, this study demonstrates that postnatal ZIKV infection in this model may have long-lasting neurodevelopmental consequences
Performance of the subcutaneous implantable cardioverter-defibrillator in patients with a primary prevention indication with and without a reduced ejection fraction versus patients with a secondary prevention indication
Background: The subcutaneous implantable defibrillator (S-ICD) provides an alternative to the transvenous ICD for the prevention of sudden cardiac death, but has not been well studied in the most commonly treated transvenous ICD patient population, namely, primary prevention (PP) patients with left ventricular dysfunction. Objective: The analyses in the present study were designed to compar
Mathematics of Gravitational Lensing: Multiple Imaging and Magnification
The mathematical theory of gravitational lensing has revealed many generic
and global properties. Beginning with multiple imaging, we review
Morse-theoretic image counting formulas and lower bound results, and
complex-algebraic upper bounds in the case of single and multiple lens planes.
We discuss recent advances in the mathematics of stochastic lensing, discussing
a general formula for the global expected number of minimum lensed images as
well as asymptotic formulas for the probability densities of the microlensing
random time delay functions, random lensing maps, and random shear, and an
asymptotic expression for the global expected number of micro-minima. Multiple
imaging in optical geometry and a spacetime setting are treated. We review
global magnification relation results for model-dependent scenarios and cover
recent developments on universal local magnification relations for higher order
caustics.Comment: 25 pages, 4 figures. Invited review submitted for special issue of
General Relativity and Gravitatio
Spinor condensates and light scattering from Bose-Einstein condensates
These notes discuss two aspects of the physics of atomic Bose-Einstein
condensates: optical properties and spinor condensates. The first topic
includes light scattering experiments which probe the excitations of a
condensate in both the free-particle and phonon regime. At higher light
intensity, a new form of superradiance and phase-coherent matter wave
amplification were observed. We also discuss properties of spinor condensates
and describe studies of ground--state spin domain structures and dynamical
studies which revealed metastable excited states and quantum tunneling.Comment: 58 pages, 33 figures, to appear in Proceedings of Les Houches 1999
Summer School, Session LXXI
- …