7,380 research outputs found
Smoothing Dynamic Systems with State-Dependent Covariance Matrices
Kalman filtering and smoothing algorithms are used in many areas, including
tracking and navigation, medical applications, and financial trend filtering.
One of the basic assumptions required to apply the Kalman smoothing framework
is that error covariance matrices are known and given. In this paper, we study
a general class of inference problems where covariance matrices can depend
functionally on unknown parameters. In the Kalman framework, this allows
modeling situations where covariance matrices may depend functionally on the
state sequence being estimated. We present an extended formulation and
generalized Gauss-Newton (GGN) algorithm for inference in this context. When
applied to dynamic systems inference, we show the algorithm can be implemented
to preserve the computational efficiency of the classic Kalman smoother. The
new approach is illustrated with a synthetic numerical example.Comment: 8 pages, 1 figur
Medicaid Policy and Long-Term Care Spending: An Interactive View
Examines state variations in Medicaid spending on long-term care and links between coverage policies and spending. Outlines potential factors, limitations of conventional methods of measurement, and an approach that includes interactions between policies
Linear system identification using stable spline kernels and PLQ penalties
The classical approach to linear system identification is given by parametric
Prediction Error Methods (PEM). In this context, model complexity is often
unknown so that a model order selection step is needed to suitably trade-off
bias and variance. Recently, a different approach to linear system
identification has been introduced, where model order determination is avoided
by using a regularized least squares framework. In particular, the penalty term
on the impulse response is defined by so called stable spline kernels. They
embed information on regularity and BIBO stability, and depend on a small
number of parameters which can be estimated from data. In this paper, we
provide new nonsmooth formulations of the stable spline estimator. In
particular, we consider linear system identification problems in a very broad
context, where regularization functionals and data misfits can come from a rich
set of piecewise linear quadratic functions. Moreover, our anal- ysis includes
polyhedral inequality constraints on the unknown impulse response. For any
formulation in this class, we show that interior point methods can be used to
solve the system identification problem, with complexity O(n3)+O(mn2) in each
iteration, where n and m are the number of impulse response coefficients and
measurements, respectively. The usefulness of the framework is illustrated via
a numerical experiment where output measurements are contaminated by outliers.Comment: 8 pages, 2 figure
- …