630 research outputs found
A Coherent Spin-Photon Interface in Silicon
Electron spins in silicon quantum dots are attractive systems for quantum
computing due to their long coherence times and the promise of rapid scaling
using semiconductor fabrication techniques. While nearest neighbor exchange
coupling of two spins has been demonstrated, the interaction of spins via
microwave frequency photons could enable long distance spin-spin coupling and
"all-to-all" qubit connectivity. Here we demonstrate strong-coupling between a
single spin in silicon and a microwave frequency photon with spin-photon
coupling rates g_s/(2\pi) > 10 MHz. The mechanism enabling coherent spin-photon
interactions is based on spin-charge hybridization in the presence of a
magnetic field gradient. In addition to spin-photon coupling, we demonstrate
coherent control of a single spin in the device and quantum non-demolition spin
state readout using cavity photons. These results open a direct path toward
entangling single spins using microwave frequency photons
Charge qubit entanglement in double quantum dots
We study entanglement of charge qubits in a vertical tunnel-coupled double
quantum dot containing two interacting electrons. Exact diagonalization is used
to compute the negativity characterizing entanglement. We find that
entanglement can be efficiently generated and controlled by sidegate voltages,
and describe how it can be detected. For large enough tunnel coupling, the
negativity shows a pronounced maximum at an intermediate interaction strength
within the Wigner molecule regime.Comment: revised version of the manuscript, as published in EPL, 7 pages, 4
figure
Test of Bell's Inequality using the Spin Filter Effect in Ferromagnetic Semiconductor Micro-structures
A theoretical proposal for testing Bell's inequality in mesoscopic systems is
presented. We show that the entanglement of two electron spins can be detected
in the spin filter effect in the mesoscopic semiconductor / ferromagnetic
semiconductor / semiconductor junction. The current-current correlation
function is calculated by use of the quantum scattering theory and we compare
it with the local hidden variable theory. We also discuss the influence of an
imperfect spin filter and derive the condition to see the violation of Bell's
inequality experimentally.Comment: 6 pages, 4 figures, submitted to J. Phys. Soc. Jp
Electromagnetically induced transparency in superconducting quantum circuits : Effects of decoherence, tunneling and multi-level cross-talk
We explore theoretically electromagnetically-induced transparency (EIT) in a
superconducting quantum circuit (SQC). The system is a persistent-current flux
qubit biased in a configuration. Previously [Phys. Rev. Lett. 93,
087003 (2004)], we showed that an ideally-prepared EIT system provides a
sensitive means to probe decoherence. Here, we extend this work by exploring
the effects of imperfect dark-state preparation and specific decoherence
mechanisms (population loss via tunneling, pure dephasing, and incoherent
population exchange). We find an initial, rapid population loss from the
system for an imperfectly prepared dark state. This is followed by a
slower population loss due to both the detuning of the microwave fields from
the EIT resonance and the existing decoherence mechanisms. We find analytic
expressions for the slow loss rate, with coefficients that depend on the
particular decoherence mechanisms, thereby providing a means to probe,
identify, and quantify various sources of decoherence with EIT. We go beyond
the rotating wave approximation to consider how strong microwave fields can
induce additional off-resonant transitions in the SQC, and we show how these
effects can be mitigated by compensation of the resulting AC Stark shifts
Unsupervised online activity discovery using temporal behaviour assumption
We present a novel unsupervised approach, UnADevs, for discovering activity clusters corresponding to periodic and stationary activities in streaming sensor data. Such activities usually last for some time, which is exploited by our method; it includes mechanisms to regulate sensitivity to brief outliers and can discover multiple clusters overlapping in time to better deal with deviations from nominal behaviour. The method was evaluated on two activity datasets containing large number of activities (14 and 33 respectively) against online agglomerative clustering and DBSCAN. In a multi-criteria evaluation, our approach achieved significantly better performance on majority of the measures, with the advantages that: (i) it does not require to specify the number of clusters beforehand (it is open ended); (ii) it is online and can find clusters in real time; (iii) it has constant time complexity; (iv) and it is memory efficient as it does not keep the data samples in memory. Overall, it has managed to discover 616 of the total 717 activities. Because it discovers clusters of activities in real time, it is ideal to work alongside an active learning system
RNA secondary structure design
We consider the inverse-folding problem for RNA secondary structures: for a
given (pseudo-knot-free) secondary structure find a sequence that has that
structure as its ground state. If such a sequence exists, the structure is
called designable. We implemented a branch-and-bound algorithm that is able to
do an exhaustive search within the sequence space, i.e., gives an exact answer
whether such a sequence exists. The bound required by the branch-and-bound
algorithm are calculated by a dynamic programming algorithm. We consider
different alphabet sizes and an ensemble of random structures, which we want to
design. We find that for two letters almost none of these structures are
designable. The designability improves for the three-letter case, but still a
significant fraction of structures is undesignable. This changes when we look
at the natural four-letter case with two pairs of complementary bases:
undesignable structures are the exception, although they still exist. Finally,
we also study the relation between designability and the algorithmic complexity
of the branch-and-bound algorithm. Within the ensemble of structures, a high
average degree of undesignability is correlated to a long time to prove that a
given structure is (un-)designable. In the four-letter case, where the
designability is high everywhere, the algorithmic complexity is highest in the
region of naturally occurring RNA.Comment: 11 pages, 10 figure
Universal Quantum Computation with the Exchange Interaction
Experimental implementations of quantum computer architectures are now being
investigated in many different physical settings. The full set of requirements
that must be met to make quantum computing a reality in the laboratory [1] is
daunting, involving capabilities well beyond the present state of the art. In
this report we develop a significant simplification of these requirements that
can be applied in many recent solid-state approaches, using quantum dots [2],
and using donor-atom nuclear spins [3] or electron spins [4]. In these
approaches, the basic two-qubit quantum gate is generated by a tunable
Heisenberg interaction (the Hamiltonian is between spins and ), while the one-qubit gates require the control
of a local Zeeman field. Compared to the Heisenberg operation, the one-qubit
operations are significantly slower and require substantially greater materials
and device complexity, which may also contribute to increasing the decoherence
rate. Here we introduce an explicit scheme in which the Heisenberg interaction
alone suffices to exactly implement any quantum computer circuit, at a price of
a factor of three in additional qubits and about a factor of ten in additional
two-qubit operations. Even at this cost, the ability to eliminate the
complexity of one-qubit operations should accelerate progress towards these
solid-state implementations of quantum computation.Comment: revtex, 2 figures, this version appeared in Natur
Polynomial-Time Simulation of Pairing Models on a Quantum Computer
We propose a polynomial-time algorithm for simulation of the class of pairing
Hamiltonians, e.g., the BCS Hamiltonian, on an NMR quantum computer. The
algorithm adiabatically finds the low-lying spectrum in the vicinity of the gap
between ground and first excited states, and provides a test of the
applicability of the BCS Hamiltonian to mesoscopic superconducting systems,
such as ultra-small metallic grains.Comment: 5 pages, RevTeX, Latest, modified version to appear in Phys. Rev.
Let
Coherence-Preserving Quantum Bits
Real quantum systems couple to their environment and lose their intrinsic
quantum nature through the process known as decoherence. Here we present a
method for minimizing decoherence by making it energetically unfavorable. We
present a Hamiltonian made up solely of two-body interactions between four
two-level systems (qubits) which has a two-fold degenerate ground state. This
degenerate ground state has the property that any decoherence process acting on
an individual physical qubit must supply energy from the bath to the system.
Quantum information can be encoded into the degeneracy of the ground state and
such coherence-preserving qubits will then be robust to local decoherence at
low bath temperatures. We show how this quantum information can be universally
manipulated and indicate how this approach may be applied to a quantum dot
quantum computer.Comment: 5 pages, 1 figur
- …