177 research outputs found

    Renormalization by gravity and the Kerr spinning particle

    Get PDF
    On the basis of the Kerr spinning particle, we show that the mass renormalization is perfectly performed by gravity for an arbitrary distribution of source matter. A smooth regularization of the Kerr-Newman solution is considered, leading to a source in the form of a rotating bag filled by a false vacuum. It is shown that gravity controls the phase transition to an AdS or dS false vacuum state inside the bag, providing the mass balance.Comment: 9 pages, 2 figure

    Regularized Kerr-Newman Solution as a Gravitating Soliton

    Full text link
    The charged, spinning and gravitating soliton is realized as a regular solution of the Kerr-Newman field coupled with a chiral Higgs model. A regular core of the solution is formed by a domain wall bubble interpolating between the external Kerr-Newman solution and a flat superconducting interior. An internal electromagnetic (em) field is expelled to the boundary of the bubble by the Higgs field. The solution reveals two new peculiarities: (i) the Higgs field is oscillating, similar to the known oscillon models, (ii) the em field forms on the edge of the bubble a Wilson loop, resulting in quantization of the total angular momentum.Comment: Final published version, essential corrections, title changed, 8 pages, one fi

    The Kerr theorem and multiparticle Kerr-Schild solutions

    Full text link
    We discuss and prove an extended version of the Kerr theorem which allows one to construct exact solutions of the Einstein-Maxwell field equations from a holomorphic generating function FF of twistor variables. The exact multiparticle Kerr-Schild solutions are obtained from generating function of the form F=ikFi,F=\prod_i^k F_i, where FiF_i are partial generating functions for the spinning particles i=1...k i=1...k. Solutions have an unusual multi-sheeted structure. Twistorial structures of the i-th and j-th particles do not feel each other, forming a type of its internal space. Gravitational and electromagnetic interaction of the particles occurs via the light-like singular twistor lines. As a result, each particle turns out to be `dressed' by singular pp-strings connecting it to other particles. We argue that this solution may have a relation to quantum theory and to quantum gravity.Comment: 13 pages, 4 figures, revtex. Expressions for electromagnetic field are correcte

    Kerr geometry beyond the Quantum theory

    Full text link
    The Dirac electron theory and QED do not take into account gravitational field, while the corresponding Kerr-Newman solution with parameters of electron has very strong stringy, topological and non-local action on the Compton distances, polarizing space-time and deforming the Coulomb field. We discuss the relation of the electron to the Kerr's microgeon model and argue that the Kerr geometry may be hidden beyond the Quantum Theory. In particular, we show that the Foldi-Wouthuysen `mean-position' operator of the Dirac electron is related to a complex representation of the Kerr geometry, and to a complex stringy source. Therefore, the complex Kerr geometry may be hidden beyond the Dirac equation.Comment: 13 pages, 3 figures, based on the invited talk given at the workshop `Beyond the Quantum',v. 2. added new results, title is change

    Complex Kerr Geometry, Twistors and the Dirac Electron

    Full text link
    The Kerr-Newman spinning particle displays some remarkable relations to the Dirac electron and has a reach spinor structure which is based on a twistorial description of the Kerr congruence determined by the Kerr theorem. We consider the relation between this spinor-twistorial structure and spinors of the Dirac equation, and show that the Dirac equation may naturally be incorporated into Kerr-Schild formalism as a master equation controlling the twistorial structure of Kerr geometry. As a result, the Dirac electron acquires an extended space-time structure having clear coordinate description with natural incorporation of a gravitational field. The relation between the Dirac wave function and Kerr geometry is realized via a chain of links: {\it Dirac wave function \Rightarrow Complex Kerr-Newman Source \Rightarrow Kerr Theorem \Rightarrow Real Kerr geometry.} As a result, the wave function acquires the role of an ``order parameter'' which controls spin, dynamics, and twistorial polarization of Kerr-Newman space-time.Comment: 12 pages, 3 figs. Talk at the conference QFEXT'0

    Twistor-Beam Excitations of Black-Holes and Prequantum Kerr-Schild Geometry

    Full text link
    Exact Kerr-Schild (KS) solutions for electromagnetic excitations of black-holes, have the form of singular beams supported on twistor lines of the KS geometry. These beams have a very strong back-reaction on the metric and horizon and create a fluctuating KS geometry occupying an intermediate position between the classical and quantum gravities. We consider the Kerr theorem, which determines the twistor structure of the KS geometry and the corresponding holographic prequantum space-time adapted to subsequent quantum treatment.Comment: 7 pages, 3 Figures. Published version. Talk at the SFT09 conference, MIAN (Steklov Math. Institute), April 200
    corecore