6 research outputs found
Disulfiram Overcomes Cisplatin Resistance in Human Embryonal Carcinoma Cells
Cisplatin resistance in testicular germ cell tumors (TGCTs) is a clinical challenge. We investigated the underlying mechanisms associated with cancer stem cell (CSC) markers and modalities circumventing the chemoresistance. Chemoresistant models (designated as CisR) of human embryonal carcinoma cell lines NTERA-2 and NCCIT were derived and characterized using flow cytometry, gene expression, functional and protein arrays. Tumorigenicity was determined on immunodeficient mouse model. Disulfiram was used to examine chemosensitization of resistant cells. ALDH1A3 isoform expression was evaluated by immunohistochemistry in 216 patients’ tissue samples. Chemoresistant cells were significantly more resistant to cisplatin, carboplatin and oxaliplatin compared to parental cells. NTERA-2 CisR cells exhibited altered morphology and increased tumorigenicity. High ALDH1A3 expression and increased ALDH activity were detected in both refractory cell lines. Disulfiram in combination with cisplatin showed synergy for NTERA-2 CisR and NCCIT CisR cells and inhibited growth of NTERA-2 CisR xenografts. Significantly higher ALDH1A3 expression was detected in TGCTs patients’ tissue samples compared to normal testicular tissue. We characterized novel clinically relevant model of chemoresistant TGCTs, for the first time identified the ALDH1A3 as a therapeutic target in TGCTs and more importantly, showed that disulfiram represents a viable treatment option for refractory TGCTs
Napabucasin overcomes cisplatin resistance in ovarian germ cell tumor-derived cell line by inhibiting cancer stemness
Background: Cisplatin resistance of ovarian yolk sac tumors (oYST) is a clinical challenge due to dismal patient prognosis, even though the disease is extremely rare. We investigated potential association between cisplatin resistance and cancer stem cell (CSC) markers in chemoresistant oYST cells and targeting strategies to overcome resistance in oYST. Methods: Chemoresistant cells were derived from chemosensitive human oYST cells by cultivation in cisplatin in vitro. Derivative cells were characterized by chemoresistance, functional assays, flow cytometry, gene expression and protein arrays focused on CSC markers. RNAseq, methylation and microRNA profiling were performed. Quail chorioallantoic membranes (CAM) with implanted oYST cells were used to analyze the micro-tumor extent and interconnection with the CAM. Tumorigenicity in vivo was determined on immunodeficient mouse model. Chemoresistant cells were treated by inhibitors intefering with the CSC properties to examine the chemosensitization to cisplatin. Results: Long-term cisplatin exposure resulted in seven-fold higher IC50 value in resistant cells, cross-resistance to oxaliplatin and carboplatin, and increased migratory capacity, invasiveness and tumorigenicity, associated with hypomethylation of differentially methylated genes/promotors. Resistant cells exhibited increased expression of prominin-1 (CD133), ATP binding cassette subfamily G member 2 (ABCG2), aldehyde dehydrogenase 3 isoform A1 (ALDH3A1), correlating with reduced gene and promoter methylation, as well as increased expression of ALDH1A3 and higher overall ALDH enzymatic activity, rendering them cross-resistant to DEAB, disulfiram and napabucasin. Salinomycin and tunicamycin were significantly more toxic to resistant cells. Pretreatment with napabucasin resensitized the cells to cisplatin and reduced their tumorigenicity in vivo. Conclusions: The novel chemoresistant cells represent unique model of refractory oYST. CSC markers are associated with cisplatin resistance being possible targets in chemorefractory oYST