273 research outputs found
Absolute frequency measurement of the magnesium intercombination transition
We report on a frequency measurement of the clock
transition of Mg on a thermal atomic beam. The intercombination
transition has been referenced to a portable primary Cs frequency standard with
the help of a femtosecond fiber laser frequency comb. The achieved uncertainty
is which corresponds to an increase in accuracy of six
orders of magnitude compared to previous results. The measured frequency value
permits the calculation of several other optical transitions from to
the -level system for Mg, Mg and Mg. We describe in
detail the components of our optical frequency standard like the stabilized
spectroscopy laser, the atomic beam apparatus used for Ramsey-Bord\'e
interferometry and the frequency comb generator and discuss the uncertainty
contributions to our measurement including the first and second order Doppler
effect. An upper limit of in one second for the short term
instability of our optical frequency standard was determined by comparison with
a GPS disciplined quartz oscillator.Comment: 8 pages, 8 figure
A retrospective in-depth analysis of continuous glucose monitoring datasets for patients with hepatic glycogen storage disease:Recommended outcome parameters for glucose management
Continuous glucose monitoring (CGM) systems have great potential for real-time assessment of glycemic variation in patients with hepatic glycogen storage disease (GSD). However, detailed descriptions and in-depth analysis of CGM data from hepatic GSD patients during interventions are scarce. This is a retrospective in-depth analysis of CGM parameters, acquired in a continuous, real-time fashion describing glucose management in 15 individual GSD patients. CGM subsets are obtained both in-hospital and at home, upon nocturnal dietary intervention (n = 1), starch loads (n = 11) and treatment of GSD Ib patients with empagliflozin (n = 3). Descriptive CGM parameters, and parameters reflecting glycemic variation and glycemic control are considered useful CGM outcome parameters. Furthermore, the combination of first and second order derivatives, cumulative sum and Fourier analysis identified both subtle and sudden changes in glucose management; hence, aiding assessment of dietary and medical interventions. CGM data interpolation for nocturnal intervals reduced confounding by physical activity and diet. Based on these analyses, we conclude that in-depth CGM analysis can be a powerful tool to assess glucose management and optimize treatment in individual hepatic GSD patients
Growth of High-Mobility Bi2Te2Se Nanoplatelets on hBN Sheets by van der Waals Epitaxy
The electrical detection of the surface states of topological insulators is
strongly impeded by the interference of bulk conduction, which commonly arises
due to pronounced doping associated with the formation of lattice defects. As
exemplified by the topological insulator Bi2Te2Se, we show that via van der
Waals epitaxial growth on thin hBN substrates the structural quality of such
nanoplatelets can be substantially improved. The surface state carrier mobility
of nanoplatelets on hBN is increased by a factor of about 3 compared to
platelets on conventional Si/SiOx substrates, which enables the observation of
well-developed Shubnikov-de Haas oscillations. We furthermore demonstrate the
possibility to effectively tune the Fermi level position in the films with the
aid of a back gate
Modeling the properties of carbon nanotubes for sensor-based devices
We acknowledge funding from the European Community through NoE Nanoquanta (NMP4-CT-2004-500198), SANES (NMP4-T-2006-017310), DNA-NANODEVICES (IST-2006-029192) and NANO-ERA Chemistry projects, UPV/EHU (SGIker Arina) and the Basque Governement.Peer reviewe
Mapping of functionalized regions on carbon nanotubes by scanning tunneling microscopy
Scanning tunneling microscopy (STM) gives us the opportunity to map the
surface of functionalized carbon nanotubes in an energy resolved manner and
with atomic precision. But this potential is largely untapped, mainly due to
sample stability issues which inhibit reliable measurements. Here we present a
simple and straightforward solution that makes away with this difficulty, by
incorporating the functionalized multiwalled carbon nanotubes (MWCNT) into a
few layer graphene - nanotube composite. This enabled us to measure energy
resolved tunneling conductance maps on the nanotubes, which shed light on the
level of doping, charge transfer between tube and functional groups and the
dependence of defect creation or functionalization on crystallographic
orientation.Comment: Keywords: functionalization, carbon nanotubes, few layer graphene,
STM, CITS, ST
Recommended from our members
Initial report on the application of laser ablation - inductively coupled plasma mass spectrometry for the analysis of radioactive Hanford Tank Waste materials
Initial LA/MS analyses of Hanford tank waste samples were performed successfully using laboratory and hot cell LA/MS instrumentation systems. The experiments described in this report have demonstrated that the LA/MS data can be used to provide rapid analysis of solid, radioactive Hanford tank waste samples to identify major, minor, and trace constituents (elemental and isotopic) and fission products and radioactive isotopes. The ability to determine isotopic constituents using the LA/MS method yielded significant advantages over ICP/AES analysis by providing valuable information on fission products and radioactive constituents
High Electron Mobility in Vacuum and Ambient for PDIF-CN2 Single-Crystal Transistors
We have investigated the electron mobility on field-effect transistors based
on PDIF-CN single crystals. The family of the small molecules
PDI8-CN has been chosen for the promising results obtained for
vapour-deposited thin film FETs. We used as gate dielectric a layer of PMMA
(spinned on top of the SiO), to reduce the possibility of electron
trapping by hydroxyl groups present at surface of the oxide. For these devices
we obtained a room temperature mobility of 6 cm/Vs in vacuum and 3
cm/Vs in air. Our measurements demonstrate the possibility to obtain
n-type OFETs with performances comparable to those of p-type devices.Comment: published online in JAC
- …