148 research outputs found

    Mixed conducting yttrium-barium-cobalt-oxide for high oxygen permeation

    Get PDF
    Yttrium-barium-cobalt-oxide (YBC), especially with low Y content, has been prepared. Oxygen permeation in these materials is very high at moderate temperature. The materials Y0.05BaCo0.95O3-δ and Y0.10Ba0.90CoO3-δ consisted of a BaCoO3-δ like main phase and some minor phases. For the Y0.05BaCo0.95O3-δ material these minor phases were not exceeding 10 vol%. Y0.05BaCo0.95O3-δ had the highest oxygen permeation value of 3.9 × 10-7 mol/cm2s at 900°C; the surface exchange reaction may be the rate limiting step here. The material Y0.33Ba0.67CoO3-δ consisted mainly of two unknown cubic phases.\u

    Synthesis, characterisation and gas permeation studies on microporous silica and alumina-silica membranes for separation of propane and propylene

    Get PDF
    Microporous silica membranes are known to exhibit molecular sieving effects. However, separation of nearly equal sized molecules is difficult to carry out by size exclusion. Introducing sorption selectivity and keeping the kinetics favourable to facilitate a good contribution of permeation from sorption is a possible solution to enhance selectivity of adsorbing molecules. Results are presented in this paper on the synthesis of a microporous silica membrane with commendable permselectivity between helium and propylene. Modifications are performed on the membrane to improve its almost non-selective nature to propylene/propane mixtures to give practical separation values. Gas separation results on the modified membranes are presented. Surface selectivity on the newly added alumina surface layer is identified as the helping mechanism in realising this separation

    Characterization of Grain Boundaries in Superplastically Deformed Y-TZP Ceramics

    Get PDF
    The effects of compressive deformation on the grain boundary characteristics of fine-grained Y-TZP have been investigated using surface spectroscopy, impedance analysis, and transmission electron microscopy. After sintering at low temperature (1150°C), the grain boundaries are covered by an ultrathin (1nm) yttrium-rich amorphous film. After deformation at 1200°–1300°C under low stress, some grain boundaries are no longer covered by the amorphous film. Yttrium segregation seems to occur only at wetted grain boundaries. Evidence has been found that the extent of dewetting increases with increasing applied stress

    Analysis and theory of gas transport in microporous sol-gel derived ceramic membranes

    Get PDF
    Sol-gel modification of mesoporous alumina membranes is a very successful technique to improve gas separation performance. Due to the formed microporous top layer, the membranes show activated transport and molecular sieve-like separation factors. This paper concentrates on the mechanism of activated transport (also often referred to as micropore diffusion or molecular sieving). Based on a theoretical analysis, results from permeation and separation experiments with H2, CO2, O2, N2, CH4 and iso-C4H10 on microporous sol-gel modified supported ceramic membranes are integrated with sorption data.\ud \ud Gas permeation through these membranes is activated, and for defect-free membranes the activation energies are in the order of 13¿15 kJ.mol¿1 and 5¿6 kJ.mol¿1 for H2 and CO2 respectively. Representative permeation values are in the order of 6×10¿7 mol.m¿2.s¿1.Pa¿1 and 20×10¿7 mol.m¿2.s¿1.Pa¿1 for H2 at 25°C and 200°C, respectively. Separation factors for H2/CH4 and H2/iso-butane are in the order of 30 and 200 at 200°C, respectively, for high quality membranes.\ud \ud Processes which strongly determine gas transport through microporous materials are sorption and micropore diffusion. Consequently, the activation energy for permeation is an apparent one, consisting of a contribution from the isosteric heat of adsorption and the activation energy for micropore diffusion. An extensive model is given to analyse these contributions.\ud \ud For the experimental conditions studied, the analysis of the gas transport mechanism shows that interface processes are not rate determining. The calculated activation energies for micropore diffusion are 21 kJ.mol¿1 and 32 kJ.mol¿1 for H2 and CO2, respectively. Comparison with zeolite diffusion data shows that these activation energies are higher than for zeolite 4A (dpore=4Å), indicating that the average pore size of the sol-gel derived membranes is probably smaller

    A hydrothermal route for production of dense, nanostructured Y-TZP

    Get PDF
    Y-TZP powders were prepared either by calcination in air or crystallization under hydrothermal conditions of a hydrous gel, obtained by coprecipitation. Differences in powder properties, green compact structure and sinterability were examined. Crystallization under hydrothermal conditions occurs at temperatures as low as 190°C in the presence of ammonia. The hydrothermally treated powders are composed of soft agglomerates, that collapse under very low pressures, resulting in green bodies with high densities and small pore radii. The sinterability is greatly improved by the hydrothermal treatment and allowed the production of dense, nanostructured Y-TZP by free sintering at 1050°C

    Aging and stability of microporous sol-gel-modified ceramic membranes

    Get PDF
    Aging experiments on microporous sol-gel-derived nonsupported Si02 membranes were performed. Microstructure characterization was performed using nitrogen physisorption. It is found that both chemical aging and thermal aging result in densification of the microstructure, without pore growth. The influence of aging on supported SiO2-modified membranes was investigated using gas permeation and separation experiments. As for the nonsupported materials, some densification takes place. This leads to lower permeation rates, but a strong positive effect was observed on the separation properties. This might be attributed to a decrease of the pore size. Separation factors ranging from 50 to 125 have been measured for H2/CH4 at temperatures in the order of 250°C

    Textural evolution and phase transformation in titania membranes: Part 1. -unsupported membranes

    Get PDF
    Textural evolution in sol–gel derived nanostructured unsupported titania membranes has been studied using differential scanning calorimetry (DSC), differential thermal analysis (DTA), thermal gravimetry (TG), X-ray diffraction (XRD) and N2 adsorption. The anatase-to-rutile phase transformation kinetics were studied using the Avrami model. The precursor gel had a surface area of ca. 165 m2 g–1, which after heat treatment at 600 °C for 8 h reduced to zero. Undoped titania-gel layers transformed to more than 95% rutile after calcination at 600 °C for 8 h. The causes of surface-area reduction and pore growth were anatase crystallite growth and the enhanced sintering of rutile during transformation. Lanthanum oxide was identified as a suitable dopant for shifting the transformation temperature to ca. 850 °C. Lanthanum oxide doped titania showed an improved stability of porous texture compared to that of the undoped titania membranes

    Thermochemical stability and nonstoichiometry of erbia-stabilized bismuth oxide

    Get PDF
    A phase study has been performed of high oxygen ion conducting erbia-stabilized bismutch oxide (1-x)Bi2O3·xEr2O3 (BE100X) using thermal analysis and X-ray powder diffraction. Investigation of the effect of a long-time (500 h) anneal of samples at 650°C in air revealed that the minimum amount of erbia needed to stabilize the high-temperature cubic ¿-Bi2O3 phase is 27.5 at%. This boundary value is much larger than the one usually reported in literature where the sluggishenss of the transformation from cubic to hexagonal at high Bi contents is not taken into account. Changes in nonstoichiometry of solid solutions Bi2-2xEr2xO3+¿ between 550°C and 850°C upon varying the ambient oxygen partial pressure are minimal for samples with 27.5 at% erbia, increasing with increasing erbia content. The parameter ¿ in pure oxygen increases from 0. 0044 for BE27.5 to 0.022 for BE50 taking the composition in nitrogen (PO2 ¿ 10¿4 atm) as stoichiometric reference (¿ = 0)

    Three electrode current voltage measurements on erbia stabilized bismuth oxide with co-pressed gold gauze electrodes

    Get PDF
    The polarization behaviour of (Bi2O3)0.75(Er2O3)0.25(BE25) with a co-pressed gold gauze electrode was studied as a function of temperature and oxygen partial pressure in a three electrode cell. The anodic polarization is smaller than the cathodic polarization. The cathodic charge transfer coefficient, αc, is about 0.5 while the anodic one, αa, is about 1.5. The exchange current density shows a (PO2) dependence for partial pressures below 1 atm with an activation enthalpy of ˜126 kJ mol−1. These values compare well with results obtained from 18O exchange experiments. Current densities for the co-pressed gold gauze electrodes are about a factor of 5 to 10 larger than found for the previously reported porous sputtered gold electrodes. Analysis of the electrode impedance shows strong influence of surface diffusion on the electrode reaction, which must take place at the surface of the electrolyte

    Zirconia as a support for catalysts: influence of additives on the thermal stability of the porous texture of monoclinic zirconia

    Get PDF
    A single-phase monoclinic zirconia (the thermodynamically stable modification up to a temperature of 1170°C), having a specific surface area of 67 m2g¿1 and a well-developed mesoporous texture, has been prepared by gel-precipitation followed by calcination at 450°C. A commercially available high-surface area monoclinic zirconia powder (SBET=71 m2g¿1) has also been studied. It was found that the specific surface area and pore volume of monoclinic zirconia both decreased markedly on increasing the calcination temperature; despite the fact that the crystal structure was that of the stable modification, this did not seem to impart any substantial resistance to thermal sintering. The thermal stability of monoclinic zirconia could however be improved significantly by addition (by an impregnation technique) of various oxides: CaO, Y2O3, La2O3 all led to an improvement in the thermal stability up to 900°C while MgO exhibited stabilizing properties only up to 700°C; the best results were obtained with La2O3. All the additives investigated other than MgO were found to bring about a partial transition of the monoclinic to a fluorite-like phase of zirconia upon heat treatment; this phase has been shown in the case of the CaO-doped sample to be cubic zirconia and in the cases of the Y2O3- and La2O3-doped samples to be tetragonal zirconia. As little as 20¿50% of a theoretical monolayer quantity of La2O3 was sufficient to give satisfactory thermal stability. The results can be explained by a model involving mass transport by a surface diffusion mechanism
    corecore