451 research outputs found

    Functional specialization within rostral prefrontal cortex (Area 10): a meta-analysis

    Get PDF
    One of the least well understood regions of the human brain is rostral prefrontal cortex, approximating Brodmann's area 10. Here, we investigate the possibility that there are functional subdivisions within this region by conducting a meta-analysis of 104 functional neuroimaging studies (using positron emission tomography/functional magnetic resonance imaging). Studies involving working memory and episodic memory retrieval were disproportionately associated with lateral activations, whereas studies involving mentalizing (i.e., attending to one's own emotions and mental states or those of other agents) were disproportionately associated with medial activations. Functional variation was also observed along a rostral-caudal axis, with studies involving mentalizing yielding relatively caudal activations and studies involving multiple-task coordination yielding relatively rostral activations. A classification algorithm was trained to predict the task, given the coordinates of each activation peak. Performance was well above chance levels (74% for the three most common tasks; 45% across all eight tasks investigated) and generalized to data not included in the training set. These results point to considerable functional segregation within rostral prefrontal cortex

    Volume stabilization in a warped flux compactification model

    Get PDF
    We investigate the stability of the extra dimensions in a warped, codimension two braneworld that is based upon an Einstein-Maxwell-dilaton theory with a non-vanishing scalar field potential. The braneworld solution has two 3-branes, which are located at the positions of the conical singularities. For this type of brane solution the relative positions of the branes (the shape modulus) is determined via the tension-deficit relations, if the brane tensions are fixed. However, the volume of the extra dimensions (the volume modulus) is not fixed in the context of the classical theory, implying we should take quantum corrections into account. Hence, we discuss the one-loop effective potential of the volume modulus for a massless, minimally coupled scalar field.Comment: 25 pages, 8 figures, typos correcte

    3-Form Flux Compactification of Salam-Sezgin Supergravity

    Full text link
    The compactification of 6 dimensional Salam-Sezgin model in the presence of 3-form flux H is investigated. We find a torus topology for this compactification with two cusps which are the places of branes, while at the limit of large size L of the compact direction we also obtain sphere topology. This resembles the Randall-Sundrum I,II model. The branes at one of the cusps can be chosen to be 3- and 4-branes which fill our 4-dimensional space together with the fact that H=0 at this position restores the Lorentz symmetry. This compactification also provides an example for the so-called `time warp' solution, [0812.5107 [hep-th]]. According to a no-go theorem in d≠6d\ne 6, the time warp compactification violates the null energy condition. While the theorem is quiet for d=6, our model gives a time warp compactification which satisfies the null energy condition. We also derive the four dimensional effective Planck mass which is not obvious due to the time warp nature of the solution.Comment: 19 pages, 5 fig

    A self-tuning mechanism in (3+p)d gravity-scalar theory

    Full text link
    We present a new type of self-tuning mechanism for (3+p3+p)d brane world models in the framework of gravity-scalar theory. This new type of self-tuning mechanism exhibits a remarkable feature. In the limit gs→0g_s \to 0, gsg_s being the string coupling, the geometry of bulk spacetime remains virtually unchanged by an introduction of the Standard Model(SM)-brane, and consequently it is virtually unaffected by quantum fluctuations of SM fields with support on the SM-brane. Such a feature can be obtained by introducing Neveu-Schwarz(NS)-brane as a background brane on which our SM-brane is to be set. Indeed, field equations naturally suggest the existence of the background NS-brane. Among the given such models, of the most interest is the case with Λ=0\Lambda=0, where Λ\Lambda represents the bulk cosmological constant. This model contains a pair of coincident branes (of the SM- and the NS-branes), one of which is a codimension-2 brane placed at the origin of 2d transverse space (≡Σ2\equiv \Sigma_2), another a codimension-1 brane placed at the edge of Σ2\Sigma_2. These two branes are (anti) T-duals of each other, and one of them may be identified as our SM-brane plus the background NS-brane. In the presence of the background NS-brane (and in the absence of Λ\Lambda), the 2d transverse space Σ2\Sigma_2 becomes an orbifold R2/ZnR_2 /Z_n with an appropriate deficit angle. But this is only possible if the (3+p3+p)d Planck scale M3+pM_{3+p} and the string scale MsM_s(≡1/α′\equiv 1/\sqrt{\alpha^{\prime}}) are of the same order, which accords with the hierarchy assumption \cite{1,2,3} that the electroweak scale mEWm_{EW} is the only short distance scale existing in nature

    The General Warped Solution with Conical Branes in Six-dimensional Supergravity

    Full text link
    We present the general regular warped solution with 4D Minkowski spacetime in six-dimensional gauged supergravity. In this framework, we can easily embed multiple conical branes into the warped geometry by choosing an undetermined holomorphic function. As an example, for the holomorphic function with many zeroes, we find warped solutions with multi-branes and discuss the generalized flux quantization in this case.Comment: 1+19 pages, no figure, JHEP style, version to appear in JHE

    General Axisymmetric Solutions and Self-Tuning in 6D Chiral Gauged Supergravity

    Full text link
    We re-examine the properties of the axially-symmetric solutions to chiral gauged 6D supergravity, recently found in refs. hep-th/0307238 and hep-th/0308064. Ref. hep-th/0307238 finds the most general solutions having two singularities which are maximally-symmetric in the large 4 dimensions and which are axially-symmetric in the internal dimensions. We show that not all of these solutions have purely conical singularities at the brane positions, and that not all singularities can be interpreted as being the bulk geometry sourced by neutral 3-branes. The subset of solutions for which the metric singularities are conical precisely agree with the solutions of ref. hep-th/0308064. Establishing this connection between the solutions of these two references resolves a minor conflict concerning whether or not the tensions of the resulting branes must be negative. The tensions can be both negative and positive depending on the choice of parameters. We discuss the physical interpretation of the non-conical solutions, including their significance for the proposal for using 6-dimensional self-tuning to understand the small size of the observed vacuum energy. In passing we briefly comment on a recent paper by Garriga and Porrati which criticizes the realization of self-tuning in 6D supergravity.Comment: 27 pages, 1 figure; JHEP3 style; Some references added, and discussion of tension constraints and unwarped solutions made more explici

    Supersymmetric codimension-two branes and U(1)_R mediation in 6D gauged supergravity

    Full text link
    We construct a consistent supersymmetric action for brane chiral and vector multiplets in a six-dimensional chiral gauged supergravity. A nonzero brane tension can be accommodated by allowing for a brane-localized Fayet-Iliopoulos term proportional to the brane tension. When the brane chiral multiplet is charged under the bulk U(1)_R, we obtain a nontrivial coupling to the extra component of the U(1)_R gauge field strength as well as a singular scalar self-interaction term. Dimensionally reducing to 4D on a football supersymmetric solution, we discuss the implication of such interactions for obtaining the U(1)_R D-term in the 4D effective supergravity. By assuming the bulk gaugino condensates and nonzero brane F- and/or D-term for the uplifting potential, we have all the moduli stabilized with a vanishing cosmological constant. The brane scalar with nonzero R charge then gets a soft mass of order the gravitino mass. The overall sign of the soft mass squared depends on the sign of the R charge as well as whether the brane F- or D-term dominates.Comment: 28 pages, no figures, version to appear in JHE

    4d-Flat Compactifications With Brane Vorticities

    Full text link
    We present solutions in six-dimensional gravity coupled to a sigma model, in the presence of three-brane sources. The space transverse to the branes is a compact non-singular manifold. The example of O(3) sigma model in the presence of two three-branes is worked out in detail. We show that the four-dimensional flatness is obtained with a single condition involving the brane tensions, which are in general different and may be both positive, and another characteristic of the branes, vorticity. We speculate that the adjustment of the effective four-dimensional cosmological constant may occur through the exchange of vorticity between the branes. We then give exact instanton type solutions for sigma models targeted on a general K\"ahler manifold, and elaborate in this framework on multi-instantons of the O(3) sigma model. The latter have branes, possibly with vorticities, at the instanton positions, thus generalizing our two-brane solution.Comment: 8 pages. New references added and minor typos are correcte

    MSLED, Neutrino Oscillations and the Cosmological Constant

    Full text link
    We explore the implications for neutrino masses and mixings within the minimal version of the supersymmetric large-extra-dimensions scenario (MSLED). This model was proposed in {\tt hep-ph/0404135} to extract the phenomenological implications of the promising recent attempt (in {\tt hep-th/0304256}) to address the cosmological constant problem. Remarkably, we find that the simplest couplings between brane and bulk fermions within this approach can lead to a phenomenologically-viable pattern of neutrino masses and mixings that is also consistent with the supernova bounds which are usually the bane of extra-dimensional neutrino models. Under certain circumstances the MSLED scenario can lead to a lepton mixing (PMNS) matrix close to the so-called bi-maximal or the tri-bimaximal forms (which are known to provide a good description of the neutrino oscillation data). We discuss the implications of MSLED models for neutrino phenomenology.Comment: 38 pages, 1 figure; Reposted with a few additional reference
    • …
    corecore