8,509 research outputs found
Effective Actions, Boundaries and Precision Calculations of Casimir Energies
We perform the matching required to compute the leading effective boundary
contribution to the QED lagrangian in the presence of a conducting surface,
once the electron is integrated out. Our result resolves a confusion in the
literature concerning the interpretation of the leading such correction to the
Casimir energy. It also provides a useful theoretical laboratory for
brane-world calculations in which kinetic terms are generated on the brane,
since a lot is known about QED near boundaries.Comment: 5 pages. revtex; Added paragraphs describing finite-conductivity
effects and effects due to curvatur
Initial states and infrared physics in locally de Sitter spacetime
The long wavelength physics in a de Sitter region depends on the initial
quantum state. While such long wavelength physics is under control for massive
fields near the Hartle-Hawking vacuum state, such initial states make unnatural
assumptions about initial data outside the region of causal contact of a local
observer. We argue that a reasonable approximation to a maximum entropy state,
one that makes minimal assumptions outside an observer's horizon volume, is one
where a cutoff is placed on a surface bounded by timelike geodesics, just
outside the horizon. For sufficiently early times, such a cutoff induces
secular logarithmic divergences with the expansion of the region. For massive
fields, these effects sum to finite corrections at sufficiently late times. The
difference between the cutoff correlators and Hartle-Hawking correlators
provides a measure of the theoretical uncertainty due to lack of knowledge of
the initial state in causally disconnected regions. These differences are
negligible for primordial inflation, but can become significant during epochs
with very long-lived de Sitter regions, such as we may be entering now.Comment: 19 pages, 4 figures, references adde
Additional Marine Fishes New or Rare to Carolina Waters
Twenty marine fishes are reported for the first time from the waters of North or South Carolina, and seven additional species considered rare in these waters are also recorded. Gonadal condition and stomach contents of the largest known female Scyliorhinus meadi, a rare scyliorhinid shark, are described for the first time. Many additional records of Fistularia petimba from throughout its distributional range are included, and food habits of 15 North Carolina specimens are examined. Nine additional adults and subadults of the uncommon prlacanthid Cookeolus boops are reported, and coloration of a subadult is recorded
The S2 VLBI Correlator: A Correlator for Space VLBI and Geodetic Signal Processing
We describe the design of a correlator system for ground and space-based
VLBI. The correlator contains unique signal processing functions: flexible LO
frequency switching for bandwidth synthesis; 1 ms dump intervals, multi-rate
digital signal-processing techniques to allow correlation of signals at
different sample rates; and a digital filter for very high resolution
cross-power spectra. It also includes autocorrelation, tone extraction, pulsar
gating, signal-statistics accumulation.Comment: 44 pages, 13 figure
Regular and Irregular Boundary Conditions in the AdS/CFT Correspondence
We expand on Klebanov and Witten's recent proposal for formulating the
AdS/CFT correspondence using irregular boundary conditions. The proposal is
shown to be correct to any order in perturbation theory.Comment: 7 pages, typos correcte
On Bouncing Brane-Worlds, S-branes and Branonium Cosmology
We present several higher-dimensional spacetimes for which observers living
on 3-branes experience an induced metric which bounces. The classes of examples
include boundary branes on generalised S-brane backgrounds and probe branes in
D-brane/anti D-brane systems. The bounces we consider normally would be
expected to require an energy density which violates the weak energy condition,
and for our co-dimension one examples this is attributable to bulk curvature
terms in the effective Friedmann equation. We examine the features of the
acceleration which provides the bounce, including in some cases the existence
of positive acceleration without event horizons, and we give a geometrical
interpretation for it. We discuss the stability of the solutions from the point
of view of both the brane and the bulk. Some of our examples appear to be
stable from the bulk point of view, suggesting the possible existence of stable
bouncing cosmologies within the brane-world framework.Comment: 35 pages, 7 figures, JHEP style. Title changed and references adde
Quantum-gravity-induced matter self-interactions in the asymptotic-safety scenario
We investigate the high-energy properties of matter theories coupled to
quantum gravity. Specifically, we show that quantum gravity fluctuations
generically induce matter self-interactions in a scalar theory. Our
calculations apply within asymptotically safe quantum gravity, where our
results indicate that the UV is dominated by an interacting fixed point, with
non-vanishing gravitational as well as matter couplings. In particular,
momentum-dependent scalar self-interactions are non-zero and induce a
non-vanishing momentum-independent scalar potential. Furthermore we point out
that terms of this type can have observable consequences in the context of
scalar-field driven inflation, where they can induce potentially observable
non-Gaussianities in the CMB.Comment: 15 + 8 pages, 8 figures, extended truncation, version to be published
in PR
- …