182 research outputs found

    Proficient replication of the yeast genome by a viral DNA polymerase

    Get PDF
    DNA replication in eukaryotic cells requires minimally three B-family DNA polymerases: Pol α, Pol δ, and Pol ϵ. Pol δ replicates and matures Okazaki fragments on the lagging strand of the replication fork. Saccharomyces cerevisiae Pol δ is a three-subunit enzyme (Pol3-Pol31-Pol32). A small C-terminal domain of the catalytic subunit Pol3 carries both iron-sulfur cluster and zinc-binding motifs, which mediate interactions with Pol31, and processive replication with the replication clamp proliferating cell nuclear antigen (PCNA), respectively. We show that the entire N-terminal domain of Pol3, containing polymerase and proofreading activities, could be effectively replaced by those from bacteriophage RB69, and could carry out chromosomal DNA replication in yeast with remarkable high fidelity, provided that adaptive mutations in the replication clamp PCNA were introduced. This result is consistent with the model that all essential interactions for DNA replication in yeast are mediated through the small C-terminal domain of Pol3. The chimeric polymerase carries out processive replication with PCNA in vitro; however, in yeast, it requires an increased involvement of the mutagenic translesion DNA polymerase ζ during DNA replication

    Lagging strand maturation factor Dna2 is a component of the replication checkpoint initiation machinery

    Get PDF
    Initiation of the DNA replication checkpoint in yeast is mainly mediated by Mec1 protein kinase, the ortholog of human ATR, while its homolog Tel1, the ortholog of human ATM, has a minor replication checkpoint function. Checkpoint initiation requires stimulation of Mec1 kinase activity by specific activators. Saccharomyces cerevisiae Dna2, a nuclease-helicase that is essential for Okazaki fragment maturation, is employed specifically during S phase to stimulate Mec1 kinase and initiate the replication checkpoint. Mutations (W128A and Y130A) in the unstructured N terminus of Dna2 abrogate its checkpoint function in vitro and in vivo. Dna2 shows partial redundancy for the replication checkpoint with checkpoint initiators 9-1-1 (S. cerevisiae Ddc1–Mec3–Rad17 and human Rad9–Rad1–Hus1) and Dpb11, the ortholog of human TopBP1. A triple mutant that eliminates the checkpoint functions of all three initiators abrogates the Mec1-dependent checkpoint

    Pif1 Helicase Lengthens Some Okazaki Fragment Flaps Necessitating Dna2 Nuclease/Helicase Action in the Two-nuclease Processing Pathway

    Get PDF
    We have developed a system to reconstitute all of the proposed steps of Okazaki fragment processing using purified yeast proteins and model substrates. DNA polymerase δ was shown to extend an upstream fragment to displace a downstream fragment into a flap. In most cases, the flap was removed by flap endonuclease 1 (FEN1), in a reaction required to remove initiator RNA in vivo. The nick left after flap removal could be sealed by DNA ligase I to complete fragment joining. An alternative pathway involving FEN1 and the nuclease/helicase Dna2 has been proposed for flaps that become long enough to bind replication protein A (RPA). RPA binding can inhibit FEN1, but Dna2 can shorten RPA-bound flaps so that RPA dissociates. Recent reconstitution results indicated that Pif1 helicase, a known component of fragment processing, accelerated flap displacement, allowing the inhibitory action of RPA. In results presented here, Pif1 promoted DNA polymerase δ to displace strands that achieve a length to bind RPA, but also to be Dna2 substrates. Significantly, RPA binding to long flaps inhibited the formation of the final ligation products in the reconstituted system without Dna2. However, Dna2 reversed that inhibition to restore efficient ligation. These results suggest that the two-nuclease pathway is employed in cells to process long flap intermediates promoted by Pif1

    Parallel analysis of ribonucleotide-dependent deletions produced by yeast Top1 in vitro and in vivo

    Get PDF
    Ribonucleotides are the most abundant non-canonical component of yeast genomic DNA and their persistence is associated with a distinctive mutation signature characterized by deletion of a single repeat unit from a short tandem repeat. These deletion events are dependent on DNA topoisomerase I (Top1) and are initiated by Top1 incision at the relevant ribonucleotide 3′-phosphodiester. A requirement for the re-ligation activity of Top1 led us to propose a sequential cleavage model for Top1-dependent mutagenesis at ribonucleotides. Here, we test key features of this model via parallel in vitro and in vivo analyses. We find that the distance between two Top1 cleavage sites determines the deletion size and that this distance is inversely related to the deletion frequency. Following the creation of a gap by two Top1 cleavage events, the tandem repeat provides complementarity that promotes realignment to a nick and subsequent Top1-mediated ligation. Complementarity downstream of the gap promotes deletion formation more effectively than does complementarity upstream of the gap, consistent with constraints to realignment of the strand to which Top1 is covalently bound. Our data fortify sequential Top1 cleavage as the mechanism for ribonucleotide-dependent deletions and provide new insight into the component steps of this process

    A four-subunit DNA polymerase ζ complex containing Pol δ accessory subunits is essential for PCNA-mediated mutagenesis

    Get PDF
    DNA polymerase ζ (Pol ζ) plays a key role in DNA translesion synthesis (TLS) and mutagenesis in eukaryotes. Previously, a two-subunit Rev3–Rev7 complex had been identified as the minimal assembly required for catalytic activity in vitro. Herein, we show that Saccharomyces cerevisiae Pol ζ binds to the Pol31 and Pol32 subunits of Pol δ, forming a four-subunit Pol ζ(4) complex (Rev3–Rev7–Pol31–Pol32). A [4Fe-4S] cluster in Rev3 is essential for the formation of Pol ζ(4) and damage-induced mutagenesis. Pol32 is indispensible for complex formation, providing an explanation for the long-standing observation that pol32Δ strains are defective for mutagenesis. The Pol31 and Pol32 subunits are also required for proliferating cell nuclear antigen (PCNA)-dependent TLS by Pol ζ as Pol ζ(2) lacks functional interactions with PCNA. Mutation of the C-terminal PCNA-interaction motif in Pol32 attenuates PCNA-dependent TLS in vitro and mutagenesis in vivo. Furthermore, a mutant form of PCNA, encoded by the mutagenesis-defective pol30-113 mutant, fails to stimulate Pol ζ(4) activity, providing an explanation for the observed mutagenesis phenotype. A stable Pol ζ(4) complex can be identified in all phases of the cell cycle suggesting that this complex is not regulated at the level of protein interactions between Rev3-Rev7 and Pol31-Pol32

    Regulation of yeast DNA polymerase δ-mediated strand displacement synthesis by 5\u27-flaps

    Get PDF
    The strand displacement activity of DNA polymerase δ is strongly stimulated by its interaction with proliferating cell nuclear antigen (PCNA). However, inactivation of the 3′–5′ exonuclease activity is sufficient to allow the polymerase to carry out strand displacement even in the absence of PCNA. We have examined in vitro the basic biochemical properties that allow Pol δ-exo(−) to carry out strand displacement synthesis and discovered that it is regulated by the 5′-flaps in the DNA strand to be displaced. Under conditions where Pol δ carries out strand displacement synthesis, the presence of long 5′-flaps or addition in trans of ssDNA suppress this activity. This suggests the presence of a secondary DNA binding site on the enzyme that is responsible for modulation of strand displacement activity. The inhibitory effect of a long 5′-flap can be suppressed by its interaction with single-stranded DNA binding proteins. However, this relief of flap-inhibition does not simply originate from binding of Replication Protein A to the flap and sequestering it. Interaction of Pol δ with PCNA eliminates flap-mediated inhibition of strand displacement synthesis by masking the secondary DNA site on the polymerase. These data suggest that in addition to enhancing the processivity of the polymerase PCNA is an allosteric modulator of other Pol δ activities
    corecore