17,053 research outputs found
High resolution shadow mask patterning in deep holes and its application to an electrical wafer feed-through
The paper presents a technique to pattern materials in deep holes and/or on non-planar substrate surfaces. A rather old technique, namely, electron-beam evaporation of metals through a shadow mask, is used. The realization of high-resolution shadow masks using micromachining techniques is described. Further, a low ohmic electrical wafer foed-through with a small parasitic capacitance to the substrate and a high placing density is presented
Evolution of a coherent array of Bose-Einstein Condensates in a magnetic trap
We investigate the evolution process of the interference pattern for a
coherent array of Bose-Einstein condensates in a magnetic trap after the
optical lattices are switched off. It is shown that there is a decay and
revival of the density oscillation for the condensates confined in the magnetic
trap. We find that, due to the confinement of the magnetic trap, the
interference effect is much stronger than that of the experiment induced by
Pedri et al. (Phys. Rev. Lett, {\bf 87}, 220401), where the magnetic trap is
switched off too. The interaction correction to the interference effect is also
discussed for the density distribution of the central peak.Comment: RevTex, 17 pages,9 figures. E-mail: [email protected]
Reduced basis method for computational lithography
A bottleneck for computational lithography and optical metrology are long
computational times for near field simulations. For design, optimization, and
inverse scatterometry usually the same basic layout has to be simulated
multiple times for different values of geometrical parameters. The reduced
basis method allows to split up the solution process of a parameterized model
into an expensive offline and a cheap online part. After constructing the
reduced basis offline, the reduced model can be solved online very fast in the
order of seconds or below. Error estimators assure the reliability of the
reduced basis solution and are used for self adaptive construction of the
reduced system. We explain the idea of reduced basis and use the finite element
solver JCMsuite constructing the reduced basis system. We present a 3D
optimization application from optical proximity correction (OPC).Comment: BACUS Photomask Technology 200
Numerical analysis of nanostructures for enhanced light extraction from OLEDs
Nanostructures, like periodic arrays of scatters or low-index gratings, are
used to improve the light outcoupling from organic light-emitting diodes
(OLED). In order to optimize geometrical and material properties of such
structures, simulations of the outcoupling process are very helpful. The finite
element method is best suited for an accurate discretization of the geometry
and the singular-like field profile within the structured layer and the
emitting layer. However, a finite element simulation of the overall OLED stack
is often beyond available computer resources. The main focus of this paper is
the simulation of a single dipole source embedded into a twofold infinitely
periodic OLED structure. To overcome the numerical burden we apply the Floquet
transform, so that the computational domain reduces to the unit cell. The
relevant outcoupling data are then gained by inverse Flouqet transforming. This
step requires a careful numerical treatment as reported in this paper
A Rigorous Finite-Element Domain Decomposition Method for Electromagnetic Near Field Simulations
Rigorous computer simulations of propagating electromagnetic fields have
become an important tool for optical metrology and design of nanostructured
optical components. A vectorial finite element method (FEM) is a good choice
for an accurate modeling of complicated geometrical features. However, from a
numerical point of view solving the arising system of linear equations is very
demanding even for medium sized 3D domains. In numerics, a domain decomposition
method is a commonly used strategy to overcome this problem. Within this
approach the overall computational domain is split up into smaller domains and
interface conditions are used to assure continuity of the electromagnetic
field. Unfortunately, standard implementations of the domain decomposition
method as developed for electrostatic problems are not appropriate for wave
propagation problems. In an earlier paper we therefore proposed a domain
decomposition method adapted to electromagnetic field wave propagation
problems. In this paper we apply this method to 3D mask simulation.Comment: 9 pages, 7 figures, SPIE conference Advanced Lithography / Optical
Microlithography XXI (2008
Rigorous Simulations of 3D Patterns on Extreme Ultraviolet Lithography Masks
Simulations of light scattering off an extreme ultraviolet lithography mask
with a 2D-periodic absorber pattern are presented. In a detailed convergence
study it is shown that accurate results can be attained for relatively large 3D
computational domains and in the presence of sidewall-angles and
corner-roundings.Comment: SPIE Europe Optical Metrology, Conference Proceeding
- …