10 research outputs found

    Lumbar Disk Replacement: Restoring Mobility

    No full text

    Calcium Phosphates as Bone Graft Extenders

    No full text

    Ultrastructure of Intervertebral Disc and Vertebra-Disc Junctions Zones as a Link in Etiopathogenesis of Idiopathic Scoliosis

    Get PDF
    Background Context. There is no general accepted theory on the etiology of idiopathic scoliosis (IS). An important role of the vertebrae endplate physes (VEPh) and intervertebral discs (IVD) in spinal curve progression is acknowledged, but ultrastructural mechanisms are not well understood. Purpose. To analyze the current literature on ultrastructural characteristics of VEPh and IVD in the context of IS etiology. Study Design/Setting. A literature review. Results. There is strong evidence for multifactorial etiology of IS. Early wedging of vertebra bodies is likely due to laterally directed appositional bone growth at the concave side, caused by a combination of increased cell proliferation at the vertebrae endplate and altered mechanical properties of the outer annulus fibrosus of the adjacent IVD. Genetic defects in bending proteins necessary for IVD lamellar organization underlie altered mechanical properties. Asymmetrical ligaments, muscular stretch, and spine instability may also play roles in curve formation. Conclusions. Development of a reliable, cost effective method for identifying patients at high risk for curve progression is needed and could lead to a paradigm shift in treatment options. Unnecessary anxiety, bracing, and radiation could potentially be minimized and high risk patient could receive surgery earlier, rendering better outcomes with fewer fused segments needed to mitigate curve progression

    Catastrophic acute failure of pelvic fixation in adult spinal deformity requiring revision surgery: a multicenter review of incidence, failure mechanisms, and risk factors

    No full text
    OBJECTIVE: There are few prior reports of acute pelvic instrumentation failure in spinal deformity surgery. The objective of this study was to determine if a previously identified mechanism and rate of pelvic fixation failure were present across multiple institutions, and to determine risk factors for these types of failures. METHODS: Thirteen academic medical centers performed a retrospective review of 18 months of consecutive adult spinal fusions extending 3 or more levels, which included new pelvic screws at the time of surgery. Acute pelvic fixation failure was defined as occurring within 6 months of the index surgery and requiring surgical revision. RESULTS: Failure occurred in 37 (5%) of 779 cases and consisted of either slippage of the rods or displacement of the set screws from the screw tulip head (17 cases), screw shaft fracture (9 cases), screw loosening (9 cases), and/or resultant kyphotic fracture of the sacrum (6 cases). Revision strategies involved new pelvic fixation and/or multiple rod constructs. Six patients (16%) who underwent revision with fewer than 4 rods to the pelvis sustained a second acute failure, but no secondary failures occurred when at least 4 rods were used. In the univariate analysis, the magnitude of surgical correction was higher in the failure cohort (higher preoperative T1-pelvic angle [T1PA], presence of a 3-column osteotomy; p \u3c 0.05). Uncorrected postoperative deformity increased failure risk (pelvic incidence-lumbar lordosis mismatch \u3e 10°, higher postoperative T1PA; p \u3c 0.05). Use of pelvic screws less than 8.5 mm in diameter also increased the likelihood of failure (p \u3c 0.05). In the multivariate analysis, a larger preoperative global deformity as measured by T1PA was associated with failure, male patients were more likely to experience failure than female patients, and there was a strong association with implant manufacturer (p \u3c 0.05). Anterior column support with an L5-S1 interbody fusion was protective against failure (p \u3c 0.05). CONCLUSIONS: Acute catastrophic failures involved large-magnitude surgical corrections and likely resulted from high mechanical strain on the pelvic instrumentation. Patients with large corrections may benefit from anterior structural support placed at the most caudal motion segment and multiple rods connecting to more than 2 pelvic fixation points. If failure occurs, salvage with a minimum of 4 rods and 4 pelvic fixation points can be successful

    Evaluation of ABM/P-15 versus autogenous bone in an ovine lumbar interbody fusion model

    No full text
    A prospective, randomized study was performed in an ovine model to compare the efficacy of an anorganic bovine-derived hydroxyapatite matrix combined with a synthetic 15 amino acid residue (ABM/P-15) in facilitating lumbar interbody fusion when compared with autogenous bone harvested from the iliac crest. P-15 is a biomimetic to the cell-binding site of Type-I collagen for bone-forming cells. When combined with ABM, it creates the necessary scaffold to initiate cell invasion, binding, and subsequent osteogenesis. In this study, six adult ewes underwent anterior-lateral interbody fusion at L3/L4 and L4/L5 using PEEK interbody rings filled with autogenous bone at one level and ABM/P-15 at the other level and no additional instrumentation. Clinical CT scans were obtained at 3 and 6 months; micro-CT scans and histomorphometry analyses were performed after euthanization at 6 months. Clinical CT scan analysis showed that all autograft and ABM/P-15 treated levels had radiographically fused outside of the rings at the 3-month study time point. Although the clinical CT scans of the autograft treatment group showed significantly better fusion within the PEEK rings than ABM/P-15 at 3 months, micro-CT scans, clinical CT scans, and histomorphometric analyses showed there were no statistical differences between the two treatment groups at 6 months. Thus, ABM/P-15 was as successful as autogenous bone graft in producing lumbar spinal fusion in an ovine model, and it should be further evaluated in clinical studies
    corecore