35 research outputs found

    Diabetic retinopathy: current and future methods for early screening from a retinal hemodynamic and geometric approach

    Get PDF
    Diabetic retinopathy (DR) is a major disease and is the number one cause of blindness in the UK. In England alone, 4200 new cases appear every year and 1280 lead to blindness. DR is a result of diabetes mellitus, which affects the retina of the eye and specifically the vessel structure. Elevated levels of glucose cause a malfunction in the cell structure, which affects the vessel wall and, in severe conditions, leads to their breakage. Much research has been carried out on detecting the different stages of DR but not enough versatile research has been carried out on the detection of early DR before the appearance of any lesions. In this review, the authors approach the topic from the functional side of the human eye and how hemodynamic factors that are impaired by diabetes affect the vascular structur

    Relationship between the morphology of the foveal avascular zone, retinal structure, and macular circulation in patients with diabetes mellitus

    Get PDF
    Diabetic Retinopathy (DR) is an extremely severe and common degenerative disease. The purpose of this study was to quantify the relationship between various parameters including the Foveal Avascular Zone (FAZ) morphology, retinal layer thickness, and retinal hemodynamic properties in healthy controls and patients with diabetes mellitus (DM) with and with no mild DR (MDR) using Spectral-Domain Optical Coherence Tomography (Spectralis SDOCT, Heidelberg Engineering GmbH, Germany) and the Retinal Function Imager (Optical Imaging, Ltd., Rehovot, Israel). Our results showed a higher FAZ area and diameter in MDR patients. Blood flow analysis also showed that there is a significantly smaller venous blood flow velocity in MDR patients. Also, a significant difference in roundness was observed between DM and MDR groups supporting the development of asymmetrical FAZ expansion with worsening DR. Our results suggest a potential anisotropy in the mechanical properties of the diabetic retina with no retinopathy that may trigger the FAZ elongation in a preferred direction resulting in either thinning or thickening of intraretinal layers in the inner and outer segments of the retina as a result of autoregulation. A detailed understanding of these relationships may facilitate earlier detection of DR, allowing for preservation of vision and better clinical outcomes

    Evaluation of a combined index of optic nerve structure and function for glaucoma diagnosis

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The definitive diagnosis of glaucoma is currently based on congruent damage to both optic nerve structure and function. Given widespread quantitative assessment of both structure (imaging) and function (automated perimetry) in glaucoma, it should be possible to combine these quantitative data to diagnose disease. We have therefore defined and tested a new approach to glaucoma diagnosis by combining imaging and visual field data, using the anatomical organization of retinal ganglion cells.</p> <p>Methods</p> <p>Data from 1499 eyes of glaucoma suspects and 895 eyes with glaucoma were identified at a single glaucoma center. Each underwent Heidelberg Retinal Tomograph (HRT) imaging and standard automated perimetry. A new measure combining these two tests, the structure function index (SFI), was defined in 3 steps: 1) calculate the probability that each visual field point is abnormal, 2) calculate the probability of abnormality for each of the six HRT optic disc sectors, and 3) combine those probabilities with the probability that a field point and disc sector are linked by ganglion cell anatomy. The SFI was compared to the HRT and visual field using receiver operating characteristic (ROC) analysis.</p> <p>Results</p> <p>The SFI produced an area under the ROC curve (0.78) that was similar to that for both visual field mean deviation (0.78) and pattern standard deviation (0.80) and larger than that for a normalized measure of HRT rim area (0.66). The cases classified as glaucoma by the various tests were significantly non-overlapping. Based on the distribution of test values in the population with mild disease, the SFI may be better able to stratify this group while still clearly identifying those with severe disease.</p> <p>Conclusions</p> <p>The SFI reflects the traditional clinical diagnosis of glaucoma by combining optic nerve structure and function. In doing so, it identifies a different subset of patients than either visual field testing or optic nerve head imaging alone. Analysis of prospective data will allow us to determine whether the combined index of structure and function can provide an improved standard for glaucoma diagnosis.</p

    Integration and fusion of standard automated perimetry and optical coherence tomography data for improved automated glaucoma diagnostics

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The performance of glaucoma diagnostic systems could be conceivably improved by the integration of functional and structural test measurements that provide relevant and complementary information for reaching a diagnosis. The purpose of this study was to investigate the performance of data fusion methods and techniques for simple combination of Standard Automated Perimetry (SAP) and Optical Coherence Tomography (OCT) data for the diagnosis of glaucoma using Artificial Neural Networks (ANNs).</p> <p>Methods</p> <p>Humphrey 24-2 SITA standard SAP and StratusOCT tests were prospectively collected from a randomly selected population of 125 healthy persons and 135 patients with glaucomatous optic nerve heads and used as input for the ANNs. We tested commercially available standard parameters as well as novel ones (fused OCT and SAP data) that exploit the spatial relationship between visual field areas and sectors of the OCT peripapillary scan circle. We evaluated the performance of these SAP and OCT derived parameters both separately and in combination.</p> <p>Results</p> <p>The diagnostic accuracy from a combination of fused SAP and OCT data (95.39%) was higher than that of the best conventional parameters of either instrument, i.e. SAP Glaucoma Hemifield Test (p < 0.001) and OCT Retinal Nerve Fiber Layer Thickness ≥ 1 quadrant (p = 0.031). Fused OCT and combined fused OCT and SAP data provided similar Area under the Receiver Operating Characteristic Curve (AROC) values of 0.978 that were significantly larger (p = 0.047) compared to ANNs using SAP parameters alone (AROC = 0.945). On the other hand, ANNs based on the OCT parameters (AROC = 0.970) did not perform significantly worse than the ANNs based on the fused or combined forms of input data. The use of fused input increased the number of tests that were correctly classified by both SAP and OCT based ANNs.</p> <p>Conclusions</p> <p>Compared to the use of SAP parameters, input from the combination of fused OCT and SAP parameters, and from fused OCT data, significantly increased the performance of ANNs. Integrating parameters by including a priori relevant information through data fusion may improve ANN classification accuracy compared to currently available methods.</p

    Assessment of potential vessel segmentation pitfalls in the analysis of blood flow velocity using the Retinal Function Imager

    No full text
    PURPOSE: The purpose of our study was to investigate the potential pitfalls linked to different vessel segmentation methods when using the built-in software of the Retinal Function Imager (RFI) for the analysis of retinal blood flow velocities (BFVs). METHODS: Ten eyes of nine healthy subjects were enrolled in the study. Retinal blood flow measurements were obtained with the RFI device with a 20° field of view imaging. The same grader segmented the retinal vasculature using the RFI software in two sessions with segments ranging from 50 to 100 pixels (“short segments”) or 100-200 pixels long (“long segments”). The blood flow velocities for the arteriolar and venular system were calculated and the percentage of excluded vessel segments with high coefficients of variation (>45%) was recorded and compared by paired t-test. Spearman correlation was used to analyze the link between the two measurements by the two vessel segmentation methods. RESULTS: The number of analyzed vessel segments did not differ significantly in the two groups (28.6±2.6 short and 26.7±4.6 long segments, respectively), while the percent of acceptable segments was significantly higher in the long segment group (65.2±11.4% vs 85.2±5.87%, p=0.001). All subjects in the short segment group had more than 15% of vessel segments rejected, while in the long segment group only three subjects had a rejection rate of 15% (16.7%, 18.7% and 28%). Both arteriolar and venular velocities were lower in the short segment group, although it reached significance only in the case of the arteriolar velocities (3.93±0.55 vs 4.45±0.76 mm/s, p=0.036 and 2.95±0.56 vs. 3.17±0.84 mm/s, p=0.201 for arterioles and venules, respectively). Only the venular velocities showed significant correlation (p=0.003, R(2)=0.67) between the two groups. CONCLUSIONS: Our results suggest that BFV measurements by the RFI may be affected by the segment length and therefore care should be taken when choosing the vessel segment lengths used during the analysis of RFI data. Long segments of 100-200 pixels (400-800 μm) seem to provide more robust measurements which can be explained by the analysis methodology of the RFI device

    Corrigendum

    No full text
    Nelson DA, Burgansky-Eliash Z, Barash H, Loewenstein A, Barak A, Bartov E, Rock T, Grinvald AHigh-resolution widefield imaging of perfused capillaries without the use of contrast agentClinical Ophthalmology. 2011;5:1095-1106.The authors of this paper and their affiliations are as follows.Darin A Nelson1Amit Ruf1Jacob Oaknin1Zvia Burgansky-Eliash1,2Hila Barash1David Izhaky1Anat Loewenstein3Adiel Barak4Elisha Bartov2Tali Rock2Amiram Grinvald51Optical Imaging Ltd, Rehovot, Israel; 2Department of Ophthalmology, Edith Wolfson Medical Center, Holon, Israel; 3Department of Ophthalmology, Tel Aviv Medical Center and Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv, Israel; 4Department of Ophthalmology, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel; 5Department of Neurobiology, The Weizmann Institute of Science, Rehovot, IsraelOriginal Articl
    corecore