20 research outputs found

    Relation between mean arterial pressure and renal function in the early phase of shock: a prospective, explorative cohort study

    Get PDF
    International audienceIntroduction: Because of disturbed renal autoregulation, patients experiencing hypotension-induced renal insult might need higher levels of mean arterial pressure (MAP) than the 65 mmHg recommended level in order to avoid the progression of acute kidney insufficiency (AKI)

    Between but not within species variation in the distribution of fitness effects

    Get PDF
    New mutations provide the raw material for evolution and adaptation. The distribution of fitness effects (DFE) describes the spectrum of effects of new mutations that can occur along a genome, and is therefore of vital interest in evolutionary biology. Recent work has uncovered striking similarities in the DFE between closely related species, prompting us to ask whether there is variation in the DFE among populations of the same species, or among species with different degrees of divergence, i.e., whether there is variation in the DFE at different levels of evolution. Using exome capture data from six tree species sampled across Europe we characterised the DFE for multiple species, and for each species, multiple populations, and investigated the factors potentially influencing the DFE, such as demography, population divergence and genetic background. We find statistical support for there being variation in the DFE at the species level, even among relatively closely related species. However, we find very little difference at the population level, suggesting that differences in the DFE are primarily driven by deep features of species biology, and that evolutionarily recent events, such as demographic changes and local adaptation, have little impact

    Epidermal Growth Factor Inhibits Campylobacter jejuni-Induced Claudin-4 Disruption, Loss of Epithelial Barrier Function, and Escherichia coli Translocationâ–ż

    No full text
    Campylobacter jejuni is a leading cause of acute bacterial enteritis in humans. Poultry serves as a major reservoir of C. jejuni and is thought to act as a principal vehicle of transmission to humans. Epidermal growth factor (EGF) is a small amino acid peptide that exerts a broad range of activities on the intestinal epithelium. The aims of this study were to determine the effect of EGF on C. jejuni intestinal colonization in newly hatched chicks and to characterize its effects on C. jejuni-induced intestinal epithelial barrier disruption. White Leghorn chicks were treated with EGF daily, starting 1 day prior to C. jejuni infection, and were compared to control and C. jejuni-infected, EGF-treated chicks. Infected chicks shed C. jejuni in their feces throughout the study period. C. jejuni colonized the small intestine and cecum, disseminated to extraintestinal organs, and caused jejunal villus atrophy. EGF reduced jejunal colonization and dissemination of C. jejuni to the liver and spleen. In EGF-treated C. jejuni-infected chicks, villus height was not significantly different from that in untreated C. jejuni-infected chicks or controls. In vitro, C. jejuni attached to and invaded intestinal epithelial cells, disrupted tight junctional claudin-4, and increased transepithelial permeability. C. jejuni also promoted the translocation of noninvasive Escherichia coli C25. These C. jejuni-induced epithelial abnormalities were abolished by pretreatment with EGF, and the effect was dependent upon activation of the EGF receptor. These findings highlight EGF's ability to alter colonization of C. jejuni in the intestinal tract and to protect against pathogen-induced barrier defects

    Anti-Inflammatory Benefits of Antibiotic-Induced Neutrophil Apoptosis: Tulathromycin Induces Caspase-3-Dependent Neutrophil Programmed Cell Death and Inhibits NF-ÎşB Signaling and CXCL8 Transcriptionâ–ż

    No full text
    Clearance of apoptotic neutrophils is a central feature of the resolution of inflammation. Findings indicate that immuno-modulation and induction of neutrophil apoptosis by macrolide antibiotics generate anti-inflammatory benefits via mechanisms that remain obscure. Tulathromycin (TUL), a new antimicrobial agent for bovine respiratory disease, offers superior clinical efficacy for reasons not fully understood. The aim of this study was to identify the immuno-modulating effects of tulathromycin and, in this process, to establish tulathromycin as a new model for characterizing the novel anti-inflammatory properties of antibiotics. Bronchoalveolar lavage specimens were collected from Holstein calves 3 and 24 h postinfection, challenged intratracheally with live Mannheimia haemolytica (2 × 107 CFU), and treated with vehicle or tulathromycin (2.5 mg/kg body weight). Terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL) staining and enzyme-linked immunosorbent assay (ELISA) revealed that tulathromycin treatment significantly increased leukocyte apoptosis and reduced levels of proinflammatory leukotriene B4 in M. haemolytica-challenged calves. In vitro, tulathromycin concentration dependently induced apoptosis in freshly isolated bovine neutrophils from healthy steers in a capase-3-dependent manner but failed to induce apoptosis in bovine fibroblasts, epithelial cells, and endothelial cells, as well as freshly isolated bovine blood monocytes and monocyte-derived macrophages. The proapoptotic effects of TUL were also, in part, drug specific; equimolar concentrations of penicillin G, oxytetracycline, and ceftiofur failed to cause apoptosis in bovine neutrophils. In addition, tulathromycin significantly reduced levels of phosphorylated IκBα, nuclear translocation of NF-κB p65, and mRNA levels of proinflammatory interleukin-8 in lipopolysaccharide (LPS)-stimulated bovine neutrophils. The findings illustrate novel mechanisms through which tulathromycin confers anti-inflammatory benefits

    Giardia duodenalis: New Research Developments in Pathophysiology, Pathogenesis, and Virulence Factors

    No full text
    Giardia duodenalis is a very common, ubiquitous, intestinal protozoan parasite infecting animals and humans. Of the eight distinct genetic assemblages known to date, assemblages A and B are infectious to humans. Giardia is the most commonly recognized cause of traveller’s diarrhea. Giardiasis impairs weight gain and is responsible for a variety of extra-intestinal and post-infectious complications, including post-infectious irritable bowel syndrome, chronic fatigue, failure to thrive, and cognitive impairment. Giardiasis occurs in the absence of invasion of the intestinal tissues by the trophozoites and in the absence of any overt inflammatory cell infiltration, with the exception of a modest increase in intraepithelial lymphocytes and mast cells. In endemic parts of the World where the infection is often concurrent with bacterial enteritis causing inflammation-driven diarrheal disease, giardiasis appears to be protective against diarrhea. Recent observations have demonstrated that this effect may be due to a direct immuno-modulating effect of the parasite via its cathepsin B cysteine protease which cleaves pro-inflammatory CXCL8. No known toxin has yet been directly implicated in the pathophysiology of giardiasis. Diarrhea in giardiasis is mostly malabsorptive in nature, rather than hypersecretory. Findings from ongoing research indicate that the post-infectious effects of giardiasis may be due to microbiota dysbiosis induced by the parasite during the acute phase of infection.Ye
    corecore