7 research outputs found
Technologies of Selective Energy Supply at Evaporation of Food Solutes
The aim of the research is to create innovative evaporating equipment that can produce concentrates with a high content of solids, with a low level of thermal effects on raw materials. The significance of the solution of technological problems of the key process of food technologies - concentration of liquid solutions (juices, extracts, etc.) is shown. Problems and scientific contradictions are formulated and the hypothesis on using of electromagnetic energy sources for direct energy transfer to solution’s moisture has been offered. The prospects of such an energy effect are proved by the energy management methods. The schemes of fuel energy conversion for the conventional thermal concentration technology and the innovative plant based on the electromagnetic energy generators are presented. By means of the similarity theory the obtained model is transformed to the criterial one depicted kinetic of evaporation process at the electromagnetic field action. The dimensionless capacity of the plant is expressed by the dependence between the Energetic effect number and relative moisture content. The scheme of automated experimental system for study of the evaporation process in the microwave field is shown. The experimental results of juice evaporation are presented. It has been demonstrated that the technologies of selective energy supply represent an effective tool for improvement of juice concentration evaporative plants. The main result of the research is design of the evaporator that allows reaching juice concentrates with °brix 95 at the temperature as low as 35 °С, i.e. 2…3 times superior than traditional technologies
WAYS OF POWER EFFICIENCY INCREASE AT DRYING DISPERSABLE PRODUCTS
In the article questions of power, duration of process and quality production’s quality during drying are discussed. The new approach to modeling of drying and drying equipment is proved. Ways of perfection technologies of drying are analyzed. The mechanism and mathematical model of drying’s process of dispersive staffs by the combined way are presented
RAW MATERIAL DEWATERING ELECTROMAGNETIC TECHNOLOGIES
Moisture transfer schemes and mechanisms of capillary-porous materials dehydration are considered. Mechanical, thermal and diffusive mechanisms for different moisture linkage forms are analyzed, driving forces and velocity coefficients of processes are estimated. Availability of dehydration in microwave frequencies range field is shown. A new generalized complex that takes into account a specificity of micro- and nanokinetics of moisture transfer in products is proposed. The explanation of barodiffusive moisture transfer process mechanism in a product is shown. The results of experimental researches, in which specific energy of 1,9 MJ per 1 kg of removed moisture is reached, are shown. The tests results of the band dryer with microwave and infrared energy generators are presented
Microwave Energy as an Intensification Factor in the Heat-Mass Transfer and the Polyextract Formation
The prospects of using the specifics of food raw materials structure for organizing mass transfer in the processes of extraction and dehydration has been shown. Authors studied in depth, in comparison with existing studies, selective effect of microwave energy on moisture in food raw materials. It has been shown that targeted energy supply to nanoscale elements in food raw materials is the basis for the creation of innovative technologies. The instrument for controlling such processes can be an electromagnetic field. A successful combination of the structure of food raw materials and field parameters can initiate a powerful flow of target components from product volume. Authors have analyzed driving forces of the effect of "barodiffusion". Mechanisms and stages of the processes of components transfer from plant raw materials were proposed for the gradientless supply of electromagnetic energy. The technique, stand and results of visualization of the effect of "barodiffusion" were presented. Created stand includes an electromagnetic energy generator equipped with a digitized endoscopic camera shielded from the field, which allowed the authors to get a visualization of the phenomenon for the first time. The results of experimental studies of extraction and evaporation processes in the microwave field during the processing of food systems of different structure were considered: alcohol-water-containing, dispersed and homogeneous. Obtained results testify to the prospects of introduction of equipment using the effect of "barodiffusion" in the technology of cognac spirits, oils, polyextracts, essences, food concentrates, phytopreparations
Multistage Electrodynamic Dehydrator with Heat Pumps
The aim of this work is the utilization of the secondary steam energy through its thermal transformation in electrodynamic dehydrators developed by the authors. To achieve this goal, the use of heat pumps is proposed. A hypothesis is formulated that the use of electromagnetic energy sources in the process of removing moisture from food solutions, followed by the transformation of secondary steam energy, will allow for the formation of reverse energy flows. A method for calculating energy efficiency in the presence of direct and reverse flows is presented. Multistage dehydrators, where electrodynamic systems are used at the final stage and heat pumps at the previous stages, are analyzed. It is shown that the formation of reverse flows significantly increases the overall energy efficiency. The use of an electrodynamic apparatus at the final stage solves the problems of obtaining a highly concentrated quality solution. The application of heat pumps at the remaining stages allows for the efficient use of secondary steam energy. The most significant result is the matching schemes of heat pumps with the dehydrator and the environment. The importance of the work lies in the substantiation and confirmation of the high energy efficiency of organizing reverse energy flows, and the proposed installation with combined systems — electrodynamic and heat pump. By calculation, the modes have been established in which the overall efficiency for two-stage apparatuses with heat pumps can be increased from 0.4 to 0.6, and for four-stage dehydrators from 0.4 to 0.8
Electrodynamic Technologies in the Eco-industry of Food and Pharmaceutical Production
The growing interest in the world for research on microwave processing technologies of raw materials is shown. It has been established that information in available sources is only about laboratory-scale equipment, and theoretical information (models, mechanisms, calculation methods) is practically absent. The aim of the work is to conduct systematic studies in the “extractor — dehydrator — plant material” scheme. To achieve the goal, these electrodynamical systems are presented with parametric, mathematical, and experimental models. The most significant result of the work is that the concept of a “hybrid” process is introduced to explain the mechanism of interaction between the electromagnetic field and the raw material. Using the first law of thermodynamics, it is shown that the “hybrid” process performs work to move the solution from the volume of the material to its surface. As a result, sluggish diffusion processes are accompanied by powerful flows, the driving force of which is the pressure difference in the capillary of the material and the environment. The importance of the work is that new effects are established: mechanodiffusional and vapordynamical. Mechanodiffusional allows obtaining polyextracts in one extractor, and vapordynamical allows the dehydration of the solid phase in the form of two parallel streams — vapor and juice. Experiments were conducted with rosehip fruits, soybeans, tomato squeezes, and sunflower meal. It is shown that electrodynamical dehydrators are characterized by stable performance indicators of vapor generation up to concentrations of 85°brix, at low levels of energy consumption. The results of chemical studies of the obtained samples in electrodynamical devices are presented