2,054 research outputs found
Vector Positronium States in QED3
The homogeneous Bethe-Salpeter equation is solved in the quenched ladder
approximation for the vector positronium states of 4-component quantum
electrodynamics in 2 space and 1 time dimensions. Fermion propagator input is
from a Rainbow approximation Dyson-Schwinger solution, with a broad range of
fermion masses considered. This work is an extension of earlier work on the
scalar spectrum of the same model. The non-relativistic limit is also
considered via the large fermion mass limit. Classification of states via their
transformation properties under discrete parity transformations allows
analogies to be drawn with the meson spectrum of QCD.Comment: 24 pages, 2 encapsulated postscript figure
The analytic structure of heavy quark propagators
The renormalised quark Dyson-Schwinger equation is studied in the limit of
the renormalised current heavy quark mass m_R --> infinity. We are particularly
interested in the analytic pole structure of the heavy quark propagator in the
complex momentum plane. Approximations in which the quark-gluon vertex is
modelled by either the bare vertex or the Ball-Chiu Ansatz, and the Landau
gauge gluon propagator takes either a gaussian form or a gaussian form with an
ultraviolet asymptotic tail are used.Comment: 21 pages Latex and 5 postscript figures. The original version of this
paper has been considerably extended to include a formalism dealing with the
renormalised heavy quark Dyson-Schwinger equation and uses a more realistic
Ansatz for the gluon propagator
Mobagogy- mobile learning for a higher education community
This paper reports on a project in which a learning community of higher educators was formed to investigate how best to use mobile technologies in their own learning and teaching. Activities of this group included investigating best practice approaches by interviewing experts in the field, exploring the literature on mobile learning and then initiating and testing some mobile learning pedagogies in the context of their own higher education subjects. The community met regularly to discuss emerging issues and applications. The paper shares some of the findings gained both from the expert interviews and from the experiences of members of the community, and discusses the challenges and constraints that were experienced. We conclude with recommendations for promoting mobile learning communities in higher education. © 2010 IADIS
Exactly solvable strings in Minkowski spacetime
We study the integrability of the equations of motion for the Nambu-Goto
strings with a cohomogeneity-one symmetry in Minkowski spacetime. A
cohomogeneity-one string has a world surface which is tangent to a Killing
vector field. By virtue of the Killing vector, the equations of motion can be
reduced to the geodesic equation in the orbit space. Cohomogeneity-one strings
are classified into seven classes (Types I to VII). We investigate the
integrability of the geodesic equations for all the classes and find that the
geodesic equations are integrable. For Types I to VI, the integrability comes
from the existence of Killing vectors on the orbit space which are the
projections of Killing vectors on Minkowski spacetime. For Type VII, the
integrability is related to a projected Killing vector and a nontrivial Killing
tensor on the orbit space. We also find that the geodesic equations of all
types are exactly solvable, and show the solutions.Comment: 11 pages, a reference added, some points clarifie
Truncated Schwinger-Dyson Equations and Gauge Covariance in QED3
We study the Landau-Khalatnikov-Fradkin transformations (LKFT) in momentum
space for the dynamically generated mass function in QED3. Starting from the
Landau gauge results in the rainbow approximation, we construct solutions in
other covariant gauges. We confirm that the chiral condensate is gauge
invariant as the structure of the LKFT predicts. We also check that the gauge
dependence of the constituent fermion mass is considerably reduced as compared
to the one obtained directly by solving SDE.Comment: 17 pages, 11 figures. v3. Improved and Expanded. To appear in Few
Body System
Conservation-laws-preserving algorithms for spin dynamics simulations
We propose new algorithms for numerical integration of the equations of
motion for classical spin systems with fixed spatial site positions. The
algorithms are derived on the basis of a mid-point scheme in conjunction with
the multiple time staging propagation. Contrary to existing predictor-corrector
and decomposition approaches, the algorithms introduced preserve all the
integrals of motion inherent in the basic equations. As is demonstrated for a
lattice ferromagnet model, the present approach appears to be more efficient
even over the recently developed decomposition method.Comment: 13 pages, 2 figure
Nucleon form factors and a nonpointlike diquark
Nucleon form factors are calculated on q^2 in [0,3] GeV^2 using an Ansatz for
the nucleon's Fadde'ev amplitude motivated by quark-diquark solutions of the
relativistic Fadde'ev equation. Only the scalar diquark is retained, and it and
the quark are confined. A good description of the data requires a nonpointlike
diquark correlation with an electromagnetic radius of 0.8 r_pi. The composite,
nonpointlike nature of the diquark is crucial. It provides for diquark-breakup
terms that are of greater importance than the diquark photon absorption
contribution.Comment: 5 pages, REVTEX, epsfig, 3 figure
Diquarks: condensation without bound states
We employ a bispinor gap equation to study superfluidity at nonzero chemical
potential: mu .neq. 0, in two- and three-colour QCD. The two-colour theory,
QC2D, is an excellent exemplar: the order of truncation of the quark-quark
scattering kernel: K, has no qualitative impact, which allows a straightforward
elucidation of the effects of mu when the coupling is strong. In rainbow-ladder
truncation, diquark bound states appear in the spectrum of the three-colour
theory, a defect that is eliminated by an improvement of K. The corrected gap
equation describes a superfluid phase that is semi-quantitatively similar to
that obtained using the rainbow truncation. A model study suggests that the
width of the superfluid gap and the transition point in QC2D provide reliable
quantitative estimates of those quantities in QCD.Comment: 7 pages, 3 figures, REVTEX, epsfi
Selected nucleon form factors and a composite scalar diquark
A covariant, composite scalar diquark, Fadde'ev amplitude model for the
nucleon is used to calculate pseudoscalar, isoscalar- and isovector-vector,
axial-vector and scalar nucleon form factors. The last yields the nucleon
sigma-term and on-shell sigma-nucleon coupling. The calculated form factors are
soft, and the couplings are generally in good agreement with experiment and
other determinations. Elements in the dressed-quark-axial-vector vertex that
are not constrained by the Ward-Takahashi identity contribute ~20% to the
magnitude of g_A. The calculation of the nucleon sigma-term elucidates the only
unambiguous means of extrapolating meson-nucleon couplings off the meson
mass-shell.Comment: 12 pages, REVTEX, 5 figures, epsfi
Mass singularity and confining property in
We discuss the properties of the position space fermion propagator in three
dimensional QED which has been found previouly based on Ward-Takahashi-identity
for soft-photon emission vertex and spectral representation.There is a new type
of mass singularity which governs the long distance behaviour.It leads the
propagator vanish at large distance.This term corresponds to dynamical mass in
position space.Our model shows confining property and dynamical mass generation
for arbitrary coupling constant.Since we used dispersion retation in deriving
spectral function there is a physical mass which sets a mass scale.For finite
cut off we obtain the full propagator in the dispersion integral as a
superposition of different massses.Low energy behaviour of the proagator is
modified to decrease by position dependent mass.In the limit of zero infrared
cut-off the propagator vanishes with a new kind of infrared behaviour.Comment: 22pages,4figures,revtex4,Notational sloppiness are crrected.Submitted
to JHE
- …