1,818 research outputs found

    Gauge covariance and the fermion-photon vertex in three- and four- dimensional, massless quantum electrodynamics

    Full text link
    In the quenched approximation, the gauge covariance properties of three vertex Ans\"{a}tze in the Schwinger-Dyson equation for the fermion self energy are analysed in three- and four- dimensional quantum electrodynamics. Based on the Cornwall-Jackiw-Tomboulis effective action, it is inferred that the spectral representation used for the vertex in the gauge technique cannot support dynamical chiral symmetry breaking. A criterion for establishing whether a given Ansatz can confer gauge covariance upon the Schwinger-Dyson equation is presented and the Curtis and Pennington Ansatz is shown to satisfy this constraint. We obtain an analytic solution of the Schwinger-Dyson equation for quenched, massless three-dimensional quantum electrodynamics for arbitrary values of the gauge parameter in the absence of dynamical chiral symmetry breaking.Comment: 17 pages, PHY-7143-TH-93, REVTE

    QED in external fields, a functional point of view

    Get PDF
    A functional partial differential equation is set for the proper graphs generating functional of QED in external electromagnetic fields. This equation leads to the evolution of the proper graphs with the external field amplitude and the external field gauge dependence of the complete fermion propagator and vertex is derived non-perturbativally.Comment: 8 pages, published versio

    Transverse Ward-Takahashi Identity, Anomaly and Schwinger-Dyson Equation

    Get PDF
    Based on the path integral formalism, we rederive and extend the transverse Ward-Takahashi identities (which were first derived by Yasushi Takahashi) for the vector and the axial vector currents and simultaneously discuss the possible anomaly for them. Subsequently, we propose a new scheme for writing down and solving the Schwinger-Dyson equation in which the the transverse Ward-Takahashi identity together with the usual (longitudinal) Ward-Takahashi identity are applied to specify the fermion-boson vertex function. Especially, in two dimensional Abelian gauge theory, we show that this scheme leads to the exact and closed Schwinger-Dyson equation for the fermion propagator in the chiral limit (when the bare fermion mass is zero) and that the Schwinger-Dyson equation can be exactly solved.Comment: 22 pages, latex, no figure

    Approximation of the Schwinger--Dyson and the Bethe--Salpeter Equations and Chiral Symmetry of QCD

    Full text link
    The Bethe--Salpeter equation for the pion in chiral symmetric models is studied with a special care to consistency with low-energy relations. We propose a reduction of the rainbow Schwinger--Dyson and the ladder Bethe--Salpeter equations with a dressed gluon propagator. We prove that the reduction preserves the Ward--Takahashi identity for the axial-vector current and the PCAC relation.Comment: 10 pages, LaTe

    Conservation-laws-preserving algorithms for spin dynamics simulations

    Full text link
    We propose new algorithms for numerical integration of the equations of motion for classical spin systems with fixed spatial site positions. The algorithms are derived on the basis of a mid-point scheme in conjunction with the multiple time staging propagation. Contrary to existing predictor-corrector and decomposition approaches, the algorithms introduced preserve all the integrals of motion inherent in the basic equations. As is demonstrated for a lattice ferromagnet model, the present approach appears to be more efficient even over the recently developed decomposition method.Comment: 13 pages, 2 figure

    Optimal discrete stopping times for reliability growth tests

    Get PDF
    Often, the duration of a reliability growth development test is specified in advance and the decision to terminate or continue testing is conducted at discrete time intervals. These features are normally not captured by reliability growth models. This paper adapts a standard reliability growth model to determine the optimal time for which to plan to terminate testing. The underlying stochastic process is developed from an Order Statistic argument with Bayesian inference used to estimate the number of faults within the design and classical inference procedures used to assess the rate of fault detection. Inference procedures within this framework are explored where it is shown the Maximum Likelihood Estimators possess a small bias and converges to the Minimum Variance Unbiased Estimator after few tests for designs with moderate number of faults. It is shown that the Likelihood function can be bimodal when there is conflict between the observed rate of fault detection and the prior distribution describing the number of faults in the design. An illustrative example is provided

    Series Expansions for three-dimensional QED

    Get PDF
    Strong-coupling series expansions are calculated for the Hamiltonian version of compact lattice electrodynamics in (2+1) dimensions, with 4-component fermions. Series are calculated for the ground-state energy per site, the chiral condensate, and the masses of `glueball' and positronium states. Comparisons are made with results obtained by other techniques.Comment: 13 figure

    Singular Liouville fields and spiky strings in \rr^{1,2} and SL(2,\rr)

    Full text link
    The closed string dynamics in \rr^{1,2} and SL(2,\rr) is studied within the scheme of Pohlmeyer reduction. In both spaces two different classes of string surfaces are specified by the structure of the fundamental quadratic forms. The first class in \rr^{1,2} is associated with the standard lightcone gauge strings and the second class describes spiky strings and their conformal deformations on the Virasoro coadjoint orbits. These orbits correspond to singular Liouville fields with the monodromy matrixes ±I\pm I. The first class in SL(2,\rr) is parameterized by the Liouville fields with vanishing chiral energy functional. Similarly to \rr^{1,2}, the second class in SL(2,\rr) describes spiky strings, related to the vacuum configurations of the SL(2,\rr)/U(1) coset model.Comment: 37 p. 6 fi

    Off Mass Shell Effects in Hadron Electric Dipole Moments

    Full text link
    We note that off the quark mass shell the operators (pi+pf)μγ5(p_i+p_f)_\mu\gamma_5 and iσμν(pipf)νγ5i\sigma_{\mu\nu}(p_i -p_f)^\nu\gamma_5, both of which reduce to σE-\vec{\sigma}\cdot\vec{E} in the non-relativistic limit, are no longer identical. In this paper we explore the effects of this difference in the contribution of these quark electric moments to hadronic electric moments.Comment: 21 pages, 1 figure, Revtex, uses psfi

    Nonequilibrium effects in DNA microarrays: a multiplatform study

    Full text link
    It has recently been shown that in some DNA microarrays the time needed to reach thermal equilibrium may largely exceed the typical experimental time, which is about 15h in standard protocols (Hooyberghs et al. Phys. Rev. E 81, 012901 (2010)). In this paper we discuss how this breakdown of thermodynamic equilibrium could be detected in microarray experiments without resorting to real time hybridization data, which are difficult to implement in standard experimental conditions. The method is based on the analysis of the distribution of fluorescence intensities I from different spots for probes carrying base mismatches. In thermal equilibrium and at sufficiently low concentrations, log I is expected to be linearly related to the hybridization free energy ΔG\Delta G with a slope equal to 1/RTexp1/RT_{exp}, where TexpT_{exp} is the experimental temperature and R is the gas constant. The breakdown of equilibrium results in the deviation from this law. A model for hybridization kinetics explaining the observed experimental behavior is discussed, the so-called 3-state model. It predicts that deviations from equilibrium yield a proportionality of logI\log I to ΔG/RTeff\Delta G/RT_{eff}. Here, TeffT_{eff} is an effective temperature, higher than the experimental one. This behavior is indeed observed in some experiments on Agilent arrays. We analyze experimental data from two other microarray platforms and discuss, on the basis of the results, the attainment of equilibrium in these cases. Interestingly, the same 3-state model predicts a (dynamical) saturation of the signal at values below the expected one at equilibrium.Comment: 27 pages, 9 figures, 1 tabl
    corecore