98 research outputs found
Model Reduction Near Periodic Orbits of Hybrid Dynamical Systems
We show that, near periodic orbits, a class of hybrid models can be reduced
to or approximated by smooth continuous-time dynamical systems. Specifically,
near an exponentially stable periodic orbit undergoing isolated transitions in
a hybrid dynamical system, nearby executions generically contract
superexponentially to a constant-dimensional subsystem. Under a non-degeneracy
condition on the rank deficiency of the associated Poincare map, the
contraction occurs in finite time regardless of the stability properties of the
orbit. Hybrid transitions may be removed from the resulting subsystem via a
topological quotient that admits a smooth structure to yield an equivalent
smooth dynamical system. We demonstrate reduction of a high-dimensional
underactuated mechanical model for terrestrial locomotion, assess structural
stability of deadbeat controllers for rhythmic locomotion and manipulation, and
derive a normal form for the stability basin of a hybrid oscillator. These
applications illustrate the utility of our theoretical results for synthesis
and analysis of feedback control laws for rhythmic hybrid behavior
- …