271 research outputs found

    Alexander quandle lower bounds for link genera

    Full text link
    We denote by Q_F the family of the Alexander quandle structures supported by finite fields. For every k-component oriented link L, every partition P of L into h:=|P| sublinks, and every labelling z of such a partition by the natural numbers z_1,...,z_n, the number of X-colorings of any diagram of (L,z) is a well-defined invariant of (L,P), of the form q^(a_X(L,P,z)+1) for some natural number a_X(L,P,z). Letting X and z vary in Q_F and among the labellings of P, we define a derived invariant A_Q(L,P)=sup a_X(L,P,z). If P_M is such that |P_M|=k, we show that A_Q(L,P_M) is a lower bound for t(L), where t(L) is the tunnel number of L. If P is a "boundary partition" of L and g(L,P) denotes the infimum among the sums of the genera of a system of disjoint Seifert surfaces for the L_j's, then we show that A_Q(L,P) is at most 2g(L,P)+2k-|P|-1. We set A_Q(L):=A_Q(L,P_m), where |P_m|=1. By elaborating on a suitable version of a result by Inoue, we show that when L=K is a knot then A_Q(K) is bounded above by A(K), where A(K) is the breadth of the Alexander polynomial of K. However, for every g we exhibit examples of genus-g knots having the same Alexander polynomial but different quandle invariants A_Q. Moreover, in such examples A_Q provides sharp lower bounds for the genera of the knots. On the other hand, A_Q(L) can give better lower bounds on the genus than A(L), when L has at least two components. We show that in order to compute A_Q(L) it is enough to consider only colorings with respect to the constant labelling z=1. In the case when L=K is a knot, if either A_Q(K)=A(K) or A_Q(K) provides a sharp lower bound for the knot genus, or if A_Q(K)=1, then A_Q(K) can be realized by means of the proper subfamily of quandles X=(F_p,*), where p varies among the odd prime numbers.Comment: 36 pages; 16 figure

    Higher Order Terms in the Melvin-Morton Expansion of the Colored Jones Polynomial

    Full text link
    We formulate a conjecture about the structure of `upper lines' in the expansion of the colored Jones polynomial of a knot in powers of (q-1). The Melvin-Morton conjecture states that the bottom line in this expansion is equal to the inverse Alexander polynomial of the knot. We conjecture that the upper lines are rational functions whose denominators are powers of the Alexander polynomial. We prove this conjecture for torus knots and give experimental evidence that it is also true for other types of knots.Comment: 21 pages, 1 figure, LaTe

    Special symplectic Lie groups and hypersymplectic Lie groups

    Full text link
    A special symplectic Lie group is a triple (G,ω,)(G,\omega,\nabla) such that GG is a finite-dimensional real Lie group and ω\omega is a left invariant symplectic form on GG which is parallel with respect to a left invariant affine structure \nabla. In this paper starting from a special symplectic Lie group we show how to ``deform" the standard Lie group structure on the (co)tangent bundle through the left invariant affine structure \nabla such that the resulting Lie group admits families of left invariant hypersymplectic structures and thus becomes a hypersymplectic Lie group. We consider the affine cotangent extension problem and then introduce notions of post-affine structure and post-left-symmetric algebra which is the underlying algebraic structure of a special symplectic Lie algebra. Furthermore, we give a kind of double extensions of special symplectic Lie groups in terms of post-left-symmetric algebras.Comment: 32 page

    Contractions of Low-Dimensional Lie Algebras

    Full text link
    Theoretical background of continuous contractions of finite-dimensional Lie algebras is rigorously formulated and developed. In particular, known necessary criteria of contractions are collected and new criteria are proposed. A number of requisite invariant and semi-invariant quantities are calculated for wide classes of Lie algebras including all low-dimensional Lie algebras. An algorithm that allows one to handle one-parametric contractions is presented and applied to low-dimensional Lie algebras. As a result, all one-parametric continuous contractions for the both complex and real Lie algebras of dimensions not greater than four are constructed with intensive usage of necessary criteria of contractions and with studying correspondence between real and complex cases. Levels and co-levels of low-dimensional Lie algebras are discussed in detail. Properties of multi-parametric and repeated contractions are also investigated.Comment: 47 pages, 4 figures, revised versio

    Characterization of Knots and Links Arising From Site-specific Recombination on Twist Knots

    Full text link
    We develop a model characterizing all possible knots and links arising from recombination starting with a twist knot substrate, extending previous work of Buck and Flapan. We show that all knot or link products fall into three well-understood families of knots and links, and prove that given a positive integer nn, the number of product knots and links with minimal crossing number equal to nn grows proportionally to n5n^5. In the (common) case of twist knot substrates whose products have minimal crossing number one more than the substrate, we prove that the types of products are tightly prescribed. Finally, we give two simple examples to illustrate how this model can help determine previously uncharacterized experimental data.Comment: 32 pages, 7 tables, 27 figures, revised: figures re-arranged, and minor corrections. To appear in Journal of Physics

    The Compressibility of Minimal Lattice Knots

    Full text link
    The (isothermic) compressibility of lattice knots can be examined as a model of the effects of topology and geometry on the compressibility of ring polymers. In this paper, the compressibility of minimal length lattice knots in the simple cubic, face centered cubic and body centered cubic lattices are determined. Our results show that the compressibility is generally not monotonic, but in some cases increases with pressure. Differences of the compressibility for different knot types show that topology is a factor determining the compressibility of a lattice knot, and differences between the three lattices show that compressibility is also a function of geometry.Comment: Submitted to J. Stat. Mec
    corecore