862 research outputs found

    Centrifugation and capillarity integrated into a multiple analyte whole blood analyser

    Get PDF
    A unique clinical chemistry analyser is described which processes 90 ÎĽl of whole blood (fingerstick or venous) into multiple aliquots of diluted plasma and reports the results of 12 tests in 14 min. To perform a panel of tests, the operator applies the unmetered sample directly into a single use, 8 cm diameter plastic rotor which contains the required liquid diluent and dry reagents. Using centrifugal and capillary forces, the rotor meters the required amount of blood, separates the red cells, meters the plasma, meters the diluent, mixes the fluids, distributes the fluid to the reaction cuvettes and mixes the reagents and the diluted plasma in the cuvettes. The instrument monitors the reagent reactions simultaneously using nine wavelengths, calculates the results from the absorbance data, and reports the results

    Conformal Transformation in Gravity

    Get PDF
    The conformal transformation in the Einstein - Hilbert action leads to a new frame where an extra scalar degree of freedom is compensated by the local conformal-like symmetry. We write down a most general action resulting from such transformation and show that it covers both general relativity and conformally coupled to gravity scalar field as the particular cases. On quantum level the equivalence between the different frames is disturbed by the loop corrections. New conformal-like symmetry in anomalous and, as a result, the theory is not finite on shell at the one-loop order.Comment: LaTeX, 12 pages, no figure

    Chaos in Anisotropic Pre-Inflationary Universes

    Get PDF
    We study the dynamics of anisotropic Bianchi type-IX models with matter and cosmological constant. The models can be thought as describing the role of anisotropy in the early stages of inflation. The concurrence of the cosmological constant and anisotropy are sufficient to produce a chaotic dynamics in the gravitational degrees of freedom, connected to the presence of a critical point of saddle-center type in the phase space of the system. The invariant character of chaos is guaranteed by the topology of the cylinders emanating from unstable periodic orbits in the neighborhood of the saddle-center. We discuss a possible mechanism for amplification of specific wavelengths of inhomogeneous fluctuations in the models. A geometrical interpretation is given for Wald's inequality in terms of invariant tori and their destruction by increasing values of the cosmological constant.Comment: 14 pages, figures available under request. submitted to Physical Review

    Braneworld Dynamics of Inflationary Cosmologies with Exponential Potentials

    Full text link
    In this work we consider Randall-Sundrum braneworld type scenarios, in which the spacetime is described by a five-dimensional manifold with matter fields confined in a domain wall or three-brane. We present the results of a systematic analysis, using dynamical systems techniques, of the qualitative behaviour of Friedmann-Lemaitre-Robertson-Walker type models, whose matter is described by a scalar field with an exponential potential. We construct the state spaces for these models and discuss how their structure changes with respect to the general-relativistic case, in particular, what new critical points appear and their nature and the occurrence of bifurcation.Comment: 15 pages, 9 figures, RevTex 4. Submitted to Physical Review

    (Non)Invariance of dynamical quantities for orbit equivalent flows

    Full text link
    We study how dynamical quantities such as Lyapunov exponents, metric entropy, topological pressure, recurrence rates, and dimension-like characteristics change under a time reparameterization of a dynamical system. These quantities are shown to either remain invariant, transform according to a multiplicative factor or transform through a convoluted dependence that may take the form of an integral over the initial local values. We discuss the significance of these results for the apparent non-invariance of chaos in general relativity and explore applications to the synchronization of equilibrium states and the elimination of expansions

    Self-similar cosmological solutions with a non-minimally coupled scalar field

    Get PDF
    We present self-similar cosmological solutions for a barotropic fluid plus scalar field with Brans-Dicke-type coupling to the spacetime curvature and an arbitrary power-law potential energy. We identify all the fixed points in the autonomous phase-plane, including a scaling solution where the fluid density scales with the scalar field's kinetic and potential energy. This is related by a conformal transformation to a scaling solution for a scalar field with exponential potential minimally coupled to the spacetime curvature, but non-minimally coupled to the barotropic fluid. Radiation is automatically decoupled from the scalar field, but energy transfer between the field and non-relativistic dark matter can lead to a change to an accelerated expansion at late times in the Einstein frame. The scalar field density can mimic a cosmological constant even for steep potentials in the strong coupling limit.Comment: 10 pages, 1 figure, revtex version to appear in Phys Rev D, references adde

    One loop renormalization of the four-dimensional theory for quantum dilaton gravity.

    Get PDF
    We study the one loop renormalization in the most general metric-dilaton theory with the second derivative terms only. The general theory can be divided into two classes, models of one are equivalent to conformally coupled with gravity scalar field and also to general relativity with cosmological term. The models of second class have one extra degree of freedom which corresponds to dilaton. We calculate the one loop divergences for the models of second class and find that the arbitrary functions of dilaton in the starting action can be fine-tuned in such a manner that all the higher derivative counterterms disappear on shell. The only structures in both classical action and counterterms, which survive on shell, are the potential (cosmological) ones. They can be removed by renormalization of the dilaton field which acquire the nontrivial anomalous dimension, that leads to the effective running of the cosmological constant. For some of the renormalizable solutions of the theory the observable low energy value of the cosmological constant is small as compared with the Newtonian constant. We also discuss another application of our result.Comment: 21 pages, latex, no figures

    On the Realization of Assisted Inflation

    Get PDF
    We consider conditions necessary for a successful implementation of so-called assisted inflation. We generalize the applicability of assisted inflation beyond exponential potentials as originally proposed to include standard chaotic (\lambda \phi^4 or m^2 \phi^2) models as well. We also demonstrate that in a purely 4-dimensional theory, unless the assisted sector is in fact decoupled, the additional fields of the assisted sector actually impede inflation. As a specific example of an assisted sector, we consider a 5-dimensional KK model for which the extra dimension may be somewhat or much larger than the inverse Planck scale. In this case, the assisted sector (coming from a KK compactification) eliminates the need for a fine-tuned quartic coupling to drive chaotic inflation. This is a general result of models with one or more "large" extra dimensions.Comment: 25 pages, LaTeX fil

    Ground characterisation for PISA pile testing and analysis

    Get PDF
    This paper is the first of a set of linked publications on the PISA Joint Industry Research Project, which was concerned with the development of improved design methods for monopile foundations in offshore wind applications. PISA involved large-scale pile tests in overconsolidated glacial till at Cowden, north-east England, and in dense, normally consolidated marine sand at Dunkirk, northern France. The paper presents the characterisation of the two sites, which was crucial to the design of the field experiments and advanced numerical modelling of the pile–soil interactions. The studies described, which had to be completed at an early stage of the PISA project, added new laboratory and field campaigns to historic investigations at both sites. They enabled an accurate description of soil behaviour from small strains to ultimate states to be derived, allowing analyses to be undertaken that captured both the serviceability and limit state behaviour of the test monopiles
    • …
    corecore