1,741 research outputs found

    Effects of optimized and sub-optimum two degree of freedom lining tolerances on modeled inlet acoustic attenuation and normal incidence impedance measurement at elevated temperatures

    Get PDF
    This work first investigates the effect of manufacturing tolerances on realized attenuation for two degree-of-freedom linings with the use of lining models and finite element duct propagation codes. Acoustic linings were created for two turbofan engines that optimize attenuation at takeoff/sideline and approach conditions. Lining physical and geometric parameters were set, which best meet the optimum impedance requirements at two target frequencies. Similar linings were created to investigate sub-optimum designs. Variations of these parameters representing realistic manufacturing tolerances were used to systematically examine the effect on installed impedance and predicted attenuation. Attenuation at sideline and approach conditions was found to be sensitive to manufacturing tolerances around optimum conditions. The results of the study are case dependent; however the analysis scheme presented provides a method for cost-benefit analysis of manufacturing processes. In a second study, an impedance tube, with an associated data analysis method, was developed and analyzed for temperature uncertainties that allowed the measurement of impedance of acoustic samples at elevated temperatures. This impedance measurement method was validated at room temperature by comparing the results with predicted impedance from empirically based impedance models and with impedance measurements in a standard traversing microphone impedance tube. Impedance for four samples was measured at elevated temperatures, and the results were compared to room temperature measurements. For two of the samples, the impedances measured at elevated temperatures were compared to the results of extensions of room temperature empirical models, confirming the trend of the results of the elevated temperature measurements --Abstract, page iv

    Two cases of fungal keratitis caused by Metarhizium anisopliae

    Get PDF
    We present two cases of keratitis due to Metarhizium anisopliae in geographically separated areas of the United States. The isolates were microscopically similar but morphologically different and were identified by ribosomal DNA sequencing. Both isolates had low minimum inhibitory concentration (MIC) values to caspofungin and micafungin, but high MIC values to amphotericin B. The morphologic and antifungal susceptibility differences between the two isolates indicate possible polyphylogeny of the group. Keywords: Metarhizium, Fungal keratitis, Keratomycosis, Antifungal susceptibilit

    Potential for Thermal Enhancement by Quercetin Mediated Mechanisms Targeting p53 Antagonists in Human Melanoma Cells

    Get PDF
    Introduction: Recently Temozolomide (TMZ) has become the more commonly used analog of DTIC-related oral agents. Although the response rates achieved by TMZ alone are less than satisfactory, there is great interest in identifying compounds that could be used in combination therapy. We have previously demonstrated that the bioflavonoid quercetin (Qct) promotes a p53-mediated response in melanoma and sensitizes melanoma to DTIC. Here we demonstrate that Qct also sensitizes cells to TMZ by a mechanism that involves the modulation of a truncated p53 family member, ΔNp73. Society for Thermal Medicine Annual Meeting April 23-26, Clearwater Beach, FL

    Empirical Studies of Evolving Systems

    Get PDF
    This paper describes the results of the working group investigating the issues of empirical studies for evolving systems. The groups found that there were many issues that were central to successful evolution and this concluded that this is a very important area within software engineering. Finally nine main areas were selected for consideration. For each of these areas the central issues were identified as well as success factors. In some cases success stories were also described and the critical factors accounting for the success analysed. In some cases it was later found that a number of areas were so tightly coupled that it was important to discuss them together

    Characterization of mild whole-body hyperthermia protocols using human breast, ovarian, and colon tumors grown in severe combined immunodeficient mice.

    Get PDF
    OBJECTIVE: We have shown that one treatment of fever-like whole body hyperthermia (WBH) on mice bearing human breast tumors results in a tumor growth delay. Our goal was to repeat this study in mice bearing human ovarian or colon tumors. We further evaluated this WBH protocol by performing multiple and interrupted WBH treatments. METHODS: Human tumors were grown in severe combined immunodeficient (SCID) mice. For WBH, core body temperatures were maintained at 39.8+/-0.2 degrees C for 6-8 hours. Multiple treatments were given 6-7 days apart. Interrupted WBH consisted of three 2-hour heatings, 15 minutes apart. Tumor growth time (TGT) was the number of days to grow 1.5 or 2 times in volume. RESULTS: For WBH-treated ovarian tumors, TGT was 12+/-1.2d, compared with 5.0+/-0.1d for untreated mice (P < 0.05). For colon tumors with one WBH treatment TGT was 4.4+/-1.1d. Two and three treatments had TGTs of 9+/-2.3d and 8+/-1.6d. For the untreated tumors, TGT was 2+/-0.7d (P < 0.01 for one, two, and three treatments). Histological examination indicated that one and two treatments were associated with cellular damage within the tumors. With a slower growing colon tumor, the TGT was 24+/-3.3d with three WBH treatments, compared with 14+/-1.8d for controls (P < 0.01). The TGT of breast tumors treated with interrupted WBH was not significantly different than the noninterrupted, with TGT of 7.3+/-0.8d and 6.2+/-1.0d, respectively. CONCLUSIONS: These data illustrate that WBH causes a tumor growth delay in mice bearing human ovarian and colon tumors. This response is enhanced with a second treatment of WBH. Interrupted and noninterrupted WBH give comparable anti-tumor results. We will continue to evaluate WBH in various animal models to optimize its potential for clinical administration and maximize the anti-tumor response

    Control of Glycolytic Flux by AMPK and p53-Mediated Signaling Pathways in Tumor Cells Adapted to Grow at Low pH

    Get PDF
    Introduction: Tumor cells grow in nutrient and oxygen deprived microenvironments and adapt to the suboptimal growth conditions by altering metabolic pathways. This adaptation process characteristically results in a tumor phenotype that displays anaerobic glycolysis, chronic acidification and aggressive tumor characteristics. Understanding the tumor cell reaction to the microenvironment is a critical factor in predicting the tumor response to hyperthermia. The glucose regulatory molecule, 6-Phosphofructo-2-Kinase/Fructose-2,6-Biphosphatase Isoform-3 (PFKFB3), is a bifunctional enzyme central to glycolytic flux and downstream of the metabolic stress sensor AMP-activated protein kinase (AMPK), which has been shown to activate an isoform of Phosphofructokinase (PFK-2). Society for Thermal Medicine Annual Meeting April 23-26, Clearwater Beach, FL

    Control of Glycolytic Flux by AMPK and p53-mediated Signaling Pathways in Tumor Cells Grown at Low pH

    Get PDF
    Introduction: Tumor cells grow in nutrient and oxygen deprived microenvironments and adapt to the suboptimal growth conditions by altering metabolic pathways. This adaptation process characteristically results in a tumor phenotype that displays upregulated Hif-1α anaerobic glycolysis, chronic acidification, reduced rate of overall protein synthesis, lower rate of cell proliferation and aggressive invasive characteristics. Most transplantable tumors exhibit a pHe of 6.7- 7.0; the DB-1 melanoma xenografts used here have a pHe=6.7. Understanding tumor cell reaction to the microenvironment is a critical factor in predicting the tumor response to radiotherapy. The glucose regulatory molecule, 6-Phosphofructo-2-Kinase/Fructose-2,6- Biphosphatase Isoform-3 (PFKFB3), is a bifunctional enzyme central to glycolytic flux and downstream of the metabolic stress sensor AMP-activated protein kinase (AMPK), which we show activates an isoform of phosphofructokinase (PFK-2). Radiation Research Society (RRS) 8th Annual Meeting September 25-29, Maui, H

    Obesity alters the muscle protein synthetic response to nutrition and exercise

    Get PDF
    Improving the health of skeletal muscle is an important component of obesity treatment. Apart from allowing for physical activity, skeletal muscle tissue is fundamental for the regulation of postprandial macronutrient metabolism, a time period that represents when metabolic derangements are most often observed in adults with obesity. In order for skeletal muscle to retain its capacity for physical activity and macronutrient metabolism, its protein quantity and composition must be maintained through the efficient degradation and resynthesis for proper tissue homeostasis. Life-style behaviors such as increasing physical activity and higher protein diets are front-line treatment strategies to enhance muscle protein remodeling by primarily stimulating protein synthesis rates. However, the muscle of individuals with obesity appears to be resistant to the anabolic action of targeted exercise regimes and protein ingestion when compared to normal-weight adults. This indicates impaired muscle protein remodeling in response to the main anabolic stimuli to human skeletal muscle tissue is contributing to poor muscle health with obesity. Deranged anabolic signaling related to insulin resistance, lipid accumulation, and/or systemic/muscle inflammation are likely at the root of the anabolic resistance of muscle protein synthesis rates with obesity. The purpose of this review is to discuss the impact of protein ingestion and exercise on muscle protein remodeling in people with obesity, and the potential mechanisms underlining anabolic resistance of their muscle
    • …
    corecore