2 research outputs found

    Human TRMT2A methylates tRNA and contributes to translation fidelity

    Get PDF
    5-Methyluridine (m5U) is one of the most abundant RNA modifications found in cytosolic tRNA. tRNA methyltransferase 2 homolog A (hTRMT2A) is the dedicated mammalian enzyme for m5U formation at tRNA position 54. However, its RNA binding specificity and functional role in the cell are not well understood. Here we dissected structural and sequence requirements for binding and methylation of its RNA targets. Specificity of tRNA modification by hTRMT2A is achieved by a combination of modest binding preference and presence of a uridine in position 54 of tRNAs. Mutational analysis together with cross-linking experiments identified a large hTRMT2A–tRNA binding surface. Furthermore, complementing hTRMT2A interactome studies revealed that hTRMT2A interacts with proteins involved in RNA biogenesis. Finally, we addressed the question of the importance of hTRMT2A function by showing that its knockdown reduces translation fidelity. These findings extend the role of hTRMT2A beyond tRNA modification towards a role in translation

    Phylogeny of Maleae (Rosaceae) Based on Complete Chloroplast Genomes Supports the Distinction of <em>Aria</em>, <em>Chamaemespilus</em> and <em>Torminalis</em> as Separate Genera, Different from <em>Sorbus</em> sp.

    No full text
    Several genera formerly contained within the genus Sorbus L. sensu lato have been proposed as separate taxa, including Aria, Chamaemespilus and Torminalis. However, molecular evidence for such distinctions are rather scarce. We assembled the complete chloroplast genome of Sorbus aucuparia, another representative of Sorbus s.s., and performed detailed comparisons with the available genomes of Aria edulis, Chamaemespilus alpina and Torminalis glaberrima. Additionally, using 110 complete chloroplast genomes of the Maleae representatives, we constructed the phylogenetic tree of the tribe using Maximum Likelihood methods. The chloroplast genome of S. aucuparia was found to be similar to other species within Maleae. The phylogenetic tree of the Maleae tribe indicated that A. edulis, C. alpina and T. glaberrima formed a concise group belonging to a different clade (related to Malus) than the one including Sorbus s.s. (related to Pyrus). However, Aria and Chamaemespilus appeared to be more closely related to each other than to Torminalis. Our results provide additional support for considering Aria, Chamaemespilus and Torminalis as separate genera different from Sorbus s.s
    corecore