76 research outputs found

    Cyclosporine measurement by FPIA, PC-RIA, and HPLC following liver transplantation

    Get PDF
    The factors affecting CyA dosing and kinetics in LT patients are complex, and have been thoroughly investigated and reviewed. Plasma or WB CyA concentration monitoring remains the best method presently available for adjusting CyA dosage in LT patients in a timely manner. The availability of an FPIA assay for CyA has produced rapid drug analysis for transplant patient monitoring, but adds additional factors that must be considered in interpreting CyA concentrations. Liver dysfunction may disproportionately elevate CyA plasma or blood levels when analyzed by FPIA in relation to PC-RIA or HPLC, and adjustment of the therapeutic range or analysis by a more specific assay method may be necessary for dosage adjustment in these patients. The availability of a more specific antibody in an FPIA assay may avert these problems, as would the development of immunologic monitoring techniques that provide a global assessment of immune suppression produced by increasingly complex immunosuppressive regimens in LT patients

    Sensitivity of activated human lymphocytes to cyclosporine and its metabolites

    Get PDF
    Alloreactive T cells generated as clones from mixed lymphocyte cultures, or propagated from heart or liver transplant biopsies, were tested for secondary proliferation measured in the primed lymphocyte test in the presence of Cyclosporine A and metabolites fractionated from human bile. Significant differences were observed in Cyclosporine A sensitivity between various cell cultures ranging as high as 100-fold. The liver is the primary site of Cyclosporine A metabolism, which yields a number of hydroxylated and N-dimethylated derivatives that are eventually secreted into the bile. Bile was collected from adult liver transplant patients on Cyclosporine A therapy and following extraction with diethyl ether, separated by high pressure liquid chromatography. Thirteen fractions were tested for their effect on lymphocyte proliferation in concanavalin A activation, mixed lymphocyte cultures and primed lymphocyte test assays. The strongest immunosuppressive effect was found with fraction 8, which contained metabolite M17, which has a single hydroxylation in position 1. Only three other fractions 9, 10, and 13, which contained metabolites M1, M18, and M21, respectively, exhibited immunosuppressive activity, albeit much lower than that of Cyclosporine A. Differences in Cyclosporine A sensitivity among alloreactive T cells followed similar patterns with Cyclosporius A metabolites. Thus, the assessment of the Cyclosporine A effect must consider differences in drug sensitivity of lymphocytes involved in transplant immunity and the generation of metabolites with immunosuppressive activity. © 1988

    Pharmacokinetics of the cyclosporine-ketoconazole interaction in dogs

    Get PDF
    Numerous clinical reports have documented an increase in trough blood concentrations of cyclosporine in transplant recipients treated concomitantly with ketoconazole. The objective of this study was to elucidate the mechanism(s) underlying the cyclosporine-ketoconazole interaction using a choledochoureterostomy dog model. Five male beagle dogs received a 4 mg/kg, i.v. bolus dose of cyclosporine either alone or on day seven of a 10-day, 13 mg/kg/day, oral dosing regimen of ketoconazole. Blood samples were collected prior to and at predetermined times for 60 hrs after the cyclosporine dose, while the bile/urine mixture was collected quantitatively for 96 hours after the cyclosporine dose. Ketoconazole decreased the systemic clearance of cyclosporine from 7.0 ml/min/kg to 2.5 ml/min/kg. The terminal disposition rate constant was also decreased significantly from 0.0794 to 0.0354 hrs-1. Ketoconazole caused no significant changes in cyclosporine steady state volume of distribution, or plasma unbound fraction. Ketoconazole did not significantly alter the excretion of cyclosporine and various cyclosporine metabolites in the bile/urine mixture. Inhibition of hepatic drug metabolizing enzymes appears to be the primary reason for the ketoconazole induced elevation in cyclosporine concentration

    Induction of CYP2E1 activity in liver transplant patients as measured by chlorzoxazone 6-hydroxylation

    Get PDF
    Objective: To examine the phenotypic expression of CYP2E1 in liver transplant patients, as measured by the in vivo probe chlorzoxazone, and to evaluate CYP2E1 activity over me after transplantation. Methods: Thirty-three stable liver transplant: patients were given 250 mg chlorzoxazone within 1 year after transplantation as part of a multiprobe CYP cocktail; urine and blood were collected for 8 hours. Chlorzoxazone and 6-hydroxychlorzoxazone concentrations were determined by HPLC. Twenty-eight healthy control subjects, eight patients with moderate to severe liver disease, and four patients who had not received liver transplants were also studied for comparison. The chlorzoxazone metabolic ratio, calculated as the plasma concentration of 6-hydroxychlorzoxazone/chlorzoxazone at 4 hours after chlorzoxazone administration, was used as the phenotypic, index. In a subgroup of patients and control subjects, additional blood samples were obtained to allow for the calculation of chlorzoxazone pharmacokinetic parameters by noncompartmental methods. Results: The chlorzoxazone metabolic ratio for the liver transplant patients in the first month after transplantation (mean ± SD, 6.4 ± 5.1) was significantlp higher than that after 1 month after surgery (2.1 ± 2.0), when the chlorzoxazone metabolic ratio was not different from control subjects (0.8 ± 0.5). The chlorzoxazone metabolic ratios in the patients who had not received liver transplants (1.1 ± 0.7) were equivalent to those of healthy control subjects. The maximum observed 6-hydroxychlorzoxazone plasma concentration was 3046 ± 1848 ng/ml in seven liver transplant patients in the first month after surgery compared with 1618 ± 320 ng/ml in 16 healthy control subjects (p < 0.05). The maximum observed concentration of chlorzoxazone, the chlorzoxazone apparent oral clearance, and the formation clearance of 6-hydroxychlorzoxazone were also significantly different between the groups. Conclusions: We conclude that significant induction of CYP2E1, as indicated by the chlorzoxazone metabolic, ratio, occurs in the first month after surgery in liver transplant patients and that drugs that are substrates for CYP2E1 may require dosage alteration during that period. Contrary to expectations, drug metabolism is not uniformly depressed after liver transplantation
    corecore