66 research outputs found
Recommended from our members
The boomerang returns? Accounting for the impact of uncertainties on the dynamics of remanufacturing systems
Recent years have witnessed companies abandon traditional open-loop supply chain structures in favour of closed-loop variants, in a bid to mitigate environmental impacts and exploit economic opportunities. Central to the closed-loop paradigm is remanufacturing: the restoration of used products to useful life. While this operational model has huge potential to extend product life-cycles, the collection and recovery processes diminish the effectiveness of existing control mechanisms for open-loop systems. We systematically review the literature in the field of closed-loop supply chain dynamics, which explores the time-varying interactions of material and information flows in the different elements of remanufacturing supply chains. We supplement this with further reviews of what we call the three ‘pillars’ of such systems, i.e. forecasting, collection, and inventory and production control. This provides us with an interdisciplinary lens to investigate how a ‘boomerang’ effect (i.e. sale, consumption, and return processes) impacts on the behaviour of the closed-loop system and to understand how it can be controlled. To facilitate this, we contrast closed-loop supply chain dynamics research to the well-developed research in each pillar; explore how different disciplines have accommodated the supply, process, demand, and control uncertainties; and provide insights for future research on the dynamics of remanufacturing systems
Stochastic evolution of cosmological parameters in the early universe
We develop a stochastic formulation of cosmology in the early universe, after
considering the scatter in the redshift-apparent magnitude diagram in the early
epochs as an observational evidence for the non-deterministic evolution of
early universe. We consider the stochastic evolution of density parameter in
the early universe after the inflationary phase qualitatively, under the
assumption of fluctuating factor in the equation of state, in the
Fokker-Planck formalism. Since the scale factor for the universe depends on the
energy density, from the coupled Friedmann equations we calculated the two
variable probability distribution function assuming a flat space geometry.Comment: 10 page
Predicting Phospholipidosis Using Machine Learning
Phospholipidosis is an adverse effect caused by numerous cationic amphiphilic drugs and can affect many cell types. It is characterized by the excess accumulation of phospholipids and is most reliably identified by electron microscopy of cells revealing the presence of lamellar inclusion bodies. The development of phospholipidosis can cause a delay in the drug development process, and the importance of computational approaches to the problem has been well documented. Previous work on predictive methods for phospholipidosis showed that state of the art machine learning methods produced the best results. Here we extend this work by looking at a larger data set mined from the literature. We find that circular fingerprints lead to better models than either E-Dragon descriptors or a combination of the two. We also observe very similar performance in general between Random Forest and Support Vector Machine models.</p
- …