16 research outputs found

    In vivo dose-response of insects to Hz-2V infection

    Get PDF
    BACKGROUND: Hz-2V infection of female Helicoverpa zea moths is manifested as insects that are either sterile "agonadal" individuals with malformed reproductive tissues or fertile asymptomatic carriers which are capable of transmitting virus on to their progeny. Virus infected progeny arising from eggs laid by asymptomatic carrier females may themselves be either sterile agonadals or asymptomatic carriers. RESULTS: By injecting virus into female moths, a correlation was established between virus doses administered to the females and the levels of resulting asymptomatic and sterile progeny. CONCLUSIONS: The results of these experiments indicate that high virus doses produced a higher level of agonadal progeny and lower doses produced higher levels of asymptomatic carriers

    Infection with the insect virus Hz-2v alters mating behavior and pheromone production in female Helicoverpa zea moths

    Get PDF
    The effect of Hz-2V virus infection on the reproductive physiology and behavior of infected Helicoverpa zea Abbreviation: / GSV: gonad specific virus PSP: pheromonestatic peptid

    Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivirus 2

    Get PDF
    The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea

    The Operophtera brumata Nucleopolyhedrovirus (OpbuNPV) Represents an Early, Divergent Lineage within Genus Alphabaculovirus

    Get PDF
    Operophtera brumata nucleopolyhedrovirus (OpbuNPV) infects the larvae of the winter moth, Operophtera brumata. As part of an effort to explore the pesticidal potential of OpbuNPV, an isolate of this virus from Massachusetts (USA)β€”OpbuNPV-MAβ€”was characterized by electron microscopy of OpbuNPV occlusion bodies (OBs) and by sequencing of the viral genome. The OBs of OpbuNPV-MA consisted of irregular polyhedra and contained virions consisting of a single rod-shaped nucleocapsid within each envelope. Presumptive cypovirus OBs were also detected in sections of the OB preparation. The OpbuNPV-MA genome assembly yielded a circular contig of 119,054 bp and was found to contain little genetic variation, with most polymorphisms occurring at a frequency of \u3c 6%. A total of 130 open reading frames (ORFs) were annotated, including the 38 core genes of Baculoviridae, along with five homologous repeat (hr) regions. The results of BLASTp and phylogenetic analysis with selected ORFs indicated that OpbuNPV-MA is not closely related to other alphabaculoviruses. Phylogenies based on concatenated core gene amino acid sequence alignments placed OpbuNPV-MA on a basal branch lying outside other alphabaculovirus clades. These results indicate that OpbuNPV-MA represents a divergent baculovirus lineage that appeared early during the diversification of genus Alphabaculovirus

    Analysis of the Genome of the Sexually Transmitted Insect Virus Helicoverpa zea Nudivirus 2

    No full text
    The sexually transmitted insect virus Helicoverpa zea nudivirus 2 (HzNV-2) was determined to have a circular double-stranded DNA genome of 231,621 bp coding for an estimated 113 open reading frames (ORFs). HzNV-2 is most closely related to the nudiviruses, a sister group of the insect baculoviruses. Several putative ORFs that share homology with the baculovirus core genes were identified in the viral genome. However, HzNV-2 lacks several key genetic features of baculoviruses including the late transcriptional regulation factor, LEF-1 and the palindromic hrs, which serve as origins of replication. The HzNV-2 genome was found to code for three ORFs that had significant sequence homology to cellular genes which are not generally found in viral genomes. These included a presumed juvenile hormone esterase gene, a gene coding for a putative zinc-dependent matrix metalloprotease, and a major facilitator superfamily protein gene; all of which are believed to play a role in the cellular proliferation and the tissue hypertrophy observed in the malformation of reproductive organs observed in HzNV-2 infected corn earworm moths, Helicoverpa zea

    Pathology and ultrastructure of Hz-2V infection in the agonadal female corn earworm, Helicoverpa zea

    No full text
    The pathology and ultrastructure of the reproductive tract of Hz-2V-infected female corn earworm moths, Helicoverpa zea, were studied. The identity of malformed reproductive tissues found in virus-infected moths was determined by examining these tissues in moths that were infected with the virus at different life stages. Malformation of reproductive tissues in the progeny of virus-infected female moths was first observed by 3 days post-pupation (dpp), indicating that virus replication had altered the differentiation of these tissues very early on in their development. The ultrastructure of the grossly malformed agonadal reproductive tissues from insects aged 3–10 dpp revealed the absence of the cuticular lining found in the oviducts of normal moths, and the proliferation of epithelial cells in these infected oviduct tissues. In addition, large quantities of virus were found aggregated into a large mass in the lumen of the malformed cervix bursa of 10 dpp agonadal female pharate adult moths. Prior to eclosion, the virus in the cervix bursa was observed separated into spherical masses, which are thought to exude through the ductus bursa and collect over the vulva, forming a viral β€œwaxy plug” that is likely to play an important role in virus transmission

    Physical Maps of Autographa californica and Rachiplusia ou Nuclear Polyhedrosis Virus Recombinants

    Get PDF
    TN-368 cells were infected simultaneously with the closely related Autographa california (AcMNPV) and Rachiplusia ou (RoMNPV) nuclear polyhedrosis viruses. Progeny viral isolates were plaque purified, and their DNAs were analyzed with restriction endonucleases. Of 100 randomly cloned plaques, 7 were AcMNPV and RoMNPV recombinants, 5 were RoMNPV, and 88 were AcMNPV. The recombinants contained DNA sequences derived from both parental genomes. By comparing the restriction cleavage patterns of parental and recombinant DNAs, the crossover sites were mapped. A single double crossover was detected in each of the seven recombinant genomes. In addition, six of the seven recombinants revealed a crossover site mapping between 78 and 89% of the genome. The structural polypeptides of the seven recombinants and two parental viruses were analyzed by polyacrylamide gel electrophoresis, and their polyhedrins were identified by tryptic peptide mapping. An analysis of the segregation of three enveloped nucleocapsid proteins and of the polyhedrins among the recombinants located the DNA sequences coding for AcMNPV structural polypeptides with molecular weights of 37,000 (a capsid polypeptide), 56,000, and 90,000 and the RoMNPV structural polypeptides with molecular weights of 36,000 (a capsid polypeptide), 56,000, and 91,000. The AcMNPV and RoMNPV polypeptides of molecular weights 37,000 and 36,000, respectively, mapped within 78 to 89% or 1 to 29%, the polypeptides of molecular weights 55,000 and 56,000 mapped within 78 to 29%, and the polypeptides of molecular weights 90,000 and 91,000 mapped within 19 to 56% of the genome. The region of the parental DNAs that codes for polyhedrin was located within 70 to 89% of the genome
    corecore