15 research outputs found
Structural characteristics and antiviral activity of multiple peptides derived from MDV glycoproteins B and H
<p>Abstract</p> <p>Background</p> <p>Marek's disease virus (MDV), which is widely considered to be a natural model of virus-induced lymphoma, has the potential to cause tremendous losses in the poultry industry. To investigate the structural basis of MDV membrane fusion and to identify new viral targets for inhibition, we examined the domains of the MDV glycoproteins gH and gB.</p> <p>Results</p> <p>Four peptides derived from the MDV glycoprotein gH (gHH1, gHH2, gHH3, and gHH5) and one peptide derived from gB (gBH1) could efficiently inhibit plaque formation in primary chicken embryo fibroblast cells (CEFs) with 50% inhibitory concentrations (IC<sub>50</sub>) of below 12 μM. These peptides were also significantly able to reduce lesion formation on chorioallantoic membranes (CAMs) of infected chicken embryos at a concentration of 0.5 mM in 60 μl of solution. The HR2 peptide from Newcastle disease virus (NDVHR2) exerted effects on MDV specifically at the stage of virus entry (i.e., in a cell pre-treatment assay and an embryo co-treatment assay), suggesting cross-inhibitory effects of NDV HR2 on MDV infection. None of the peptides exhibited cytotoxic effects at the concentrations tested. Structural characteristics of the five peptides were examined further.</p> <p>Conclusions</p> <p>The five MDV-derived peptides demonstrated potent antiviral activity, not only in plaque formation assays in vitro, but also in lesion formation assays in vivo. The present study examining the antiviral activity of these MDV peptides, which are useful as small-molecule antiviral inhibitors, provides information about the MDV entry mechanism.</p
The out of Africa model of varicella-zoster virus evolution: Single nucleotide polymorphisms and private alleles distinguish Asian clades from European/North American clades
10.1016/S0264-410X(02)00559-5Vaccine2111-121072-1081VACC
Efficacy of expired foot-and-mouth disease O type vaccines in cattle and buffalo in Lao People's Democratic Republic
Lao People's Democratic Republic (Lao PDR) submitted a request to Japan for 200,000 doses of expired foot-and-mouth disease (FMD) O type vaccines that were in storage for emergency use. Approximately 100,000 animals, consisting of both cattle and Asian water buffalo (Bubalus bubalus bubalis), received the same vaccine twice within one month in Xieng Khouang province in the northeast area of Lao PDR. Concurrently, the efficacy of three-month expired FMD O type vaccine (6PD50 O Manisa) was assessed in serum samples of 90 cattle and 31 buffalo from the field using a Liquid Phase Blocking-ELISA (LPBE) assay. Of these samples, 75 cattle (83.3%) and 24 buffalo (77.4%) were seropositive against the FMD virus (FMDV) O type before vaccination. Testing for non-structural protein (NSP) using the PrioCHECK FMD NS kit showed that many of the animals with high titers in the screening test before vaccination were FMDV-infected animals. Fifteen cattle and seven buffalo with titers 1:32 or under before vaccination exhibited high titers of antibody (1:45-1:1448) one month after the first vaccination and further increased titers (1:362-1:5792) one month after the second vaccination. Nearly all of the cattle (97.6%) had high titers to control FMD 14 months after the second vaccination. To date, no outbreak of FMD has been reported at the study site. Three-month expired FMD O type vaccines induced appropriate immune responses against FMD in both cattle and buffalo
Role of domestic ducks in the propagation and biological evolution of highly pathogenic H5N1 influenza viruses in Asia
Wild waterfowl, including ducks, are natural hosts of influenza A viruses. These viruses rarely caused disease in ducks until 2002, when some H5N1 strains became highly pathogenic. Here we show that these H5N1 viruses are reverting to nonpathogenicity in ducks. Ducks experimentally infected with viruses isolated between 2003 and 2004 shed virus for an extended time (up to 17 days), during which variant viruses with low pathogenicity were selected. These results suggest that the duck has become the “Trojan horse” of Asian H5N1 influenza viruses. The ducks that are unaffected by infection with these viruses continue to circulate these viruses, presenting a pandemic threat
Are Ducks Contributing to the Endemicity of Highly Pathogenic H5N1 Influenza Virus in Asia?
Wild waterfowl are the natural reservoir of all influenza A viruses, and these viruses are usually nonpathogenic in these birds. However, since late 2002, H5N1 outbreaks in Asia have resulted in mortality among waterfowl in recreational parks, domestic flocks, and wild migratory birds. The evolutionary stasis between influenza virus and its natural host may have been disrupted, prompting us to ask whether waterfowl are resistant to H5N1 influenza virus disease and whether they can still act as a reservoir for these viruses. To better understand the biology of H5N1 viruses in ducks and attempt to answer this question, we inoculated juvenile mallards with 23 different H5N1 influenza viruses isolated in Asia between 2003 and 2004. All virus isolates replicated efficiently in inoculated ducks, and 22 were transmitted to susceptible contacts. Viruses replicated to higher levels in the trachea than in the cloaca of both inoculated and contact birds, suggesting that the digestive tract is not the main site of H5N1 influenza virus replication in ducks and that the fecal-oral route may no longer be the main transmission path. The virus isolates' pathogenicities varied from completely nonpathogenic to highly lethal and were positively correlated with tracheal virus titers. Nevertheless, the eight virus isolates that were nonpathogenic in ducks replicated and transmitted efficiently to naïve contacts, suggesting that highly pathogenic H5N1 viruses causing minimal signs of disease in ducks can propagate silently and efficiently among domestic and wild ducks in Asia and that they represent a serious threat to human and veterinary public health
Marek's disease virus Meq transforms chicken cells via the v-Jun transcriptional cascade: A converging transforming pathway for avian oncoviruses
Marek's disease virus (MDV) is a highly pathogenic and oncogenic herpesvirus of chickens. MDV encodes a basic leucine zipper (bZIP) protein, Meq (MDV EcoQ). The bZIP domain of Meq shares homology with Jun/Fos, whereas the transactivation/repressor domain is entirely different. Increasing evidence suggests that Meq is the oncoprotein of MDV. Direct evidence that Meq transforms chicken cells and the underlying mechanism, however, remain completely unknown. Taking advantage of the DF-1 chicken embryo fibroblast transformation system, a well established model for studying avian sarcoma and leukemia oncogenes, we probed the transformation properties and pathways of Meq. We found that Meq transforms DF-1, with a cell morphology akin to v-Jun and v-Ski transformed cells, and protects DF-1 from apoptosis, and the transformed cells are tumorigenic in chorioallantoic membrane assay. Significantly, using microarray and RT-PCR analyses, we have identified up-regulated genes such as JTAP-1, JAC, and HB-EGF, which belong to the v-Jun transforming pathway. In addition, c-Jun was found to form stable dimers with Meq and colocalize with it in the transformed cells. RNA interference to Meq and c-Jun down-modulated the expression of these genes and reduced the growth of the transformed DF-1, suggesting that Meq transforms chicken cells by pirating the Jun pathway. These data suggest that avian herpesvirus and retrovirus oncogenes use a similar strategy in transformation and oncogenesis