3 research outputs found
Function of the ribosomal E-site: a mutagenesis study
Ribosomes synthesize proteins according to the information encoded in mRNA. During this process, both the incoming amino acid and the nascent peptide are bound to tRNA molecules. Three binding sites for tRNA in the ribosome are known: the A-site for aminoacyl-tRNA, the P-site for peptidyl-tRNA and the E-site for the deacylated tRNA leaving the ribosome. Here, we present a study of Escherichia coli ribosomes with the E-site binding destabilized by mutation C2394G of the 23S rRNA. Expression of the mutant 23S rRNA in vivo caused increased frameshifting and stop codon readthrough. The progression of these ribosomes through the ribosomal elongation cycle in vitro reveals ejection of deacylated tRNA during the translocation step or shortly after. E-site compromised ribosomes can undergo translocation, although in some cases it is less efficient and results in a frameshift. The mutation affects formation of the P/E hybrid site and leads to a loss of stimulation of the multiple turnover GTPase activity of EF-G by deacylated tRNA bound to the ribosome
The structure of helix 89 of 23S rRNA is important for peptidyl transferase function of Escherichia coli ribosome
AbstractHelix 89 of the 23S rRNA connects ribosomal peptidyltransferase center and elongation factor binding site. Secondary structure of helix 89 determined by X-ray structural analysis involves less base pairs then could be drawn for the helix of the same primary structure. It can be that alternative secondary structure might be realized at some stage of translation. Here by means of site-directed mutagenesis we stabilized either the “X-ray” structure or the structure with largest number of paired nucleotides. Mutation UU2492-3C which aimed to provide maximal pairing of the helix 89 of the 23S rRNA was lethal. Mutant ribosomes were unable to catalyze peptide transfer independently either with aminoacyl-tRNA or puromycin
Mutations at the accommodation gate of the ribosome impair RF2-dependent translation termination
During protein synthesis, aminoacyl-tRNA (aa-tRNA) and release factors 1 and 2 (RF1 and RF2) have to bind at the catalytic center of the ribosome on the 50S subunit where they take part in peptide bond formation or peptidyl-tRNA hydrolysis, respectively. Computer simulations of aa-tRNA movement into the catalytic site (accommodation) suggested that three nucleotides of 23S rRNA, U2492, C2556, and C2573, form a “gate” at which aa-tRNA movement into the A site is retarded. Here we examined the role of nucleotides C2573 of 23S rRNA, a part of the putative accommodation gate, and of the neighboring A2572 for aa-tRNA binding followed by peptide bond formation and for the RF2-dependent peptide release. Mutations at the two positions did not affect aa-tRNA accommodation, peptide bond formation, or the fidelity of aa-tRNA selection, but impaired RF2-catalyzed peptide release. The data suggest that the ribosome is a robust machine that allows rapid aa-tRNA accommodation despite the defects at the accommodation gate. In comparison, peptide release by RF2 appears more sensitive to these mutations, due to slower accommodation of the factor or effects on RF2 positioning in the A site